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WAVE PROPAGATION AND UNDERWATER ACOUSTICS

Joseph B. Keller' and John S. Papadakis'® Editors

¥ Courant Institute of Mathematical Sciences, New York University

il Department of Mathematics, University of Rhode Island and

Naval Underwater Systems Center, New London Laboratory

Preface
A "Workshop on Wave Propagation and Underwater Acoustics" was held from
November 19 to November 21, 1974 in Mystic, Connecticut. It was sponsored by the
Acousties Branch of the Office of Naval Research under the aegis of Hugo Bezdek.
The workshop was conceived at the New London Laboratory of the Naval Underwater
Systems Center and organized by the following committee of members of that
laboratory:

Chairman: John S. Papadakis, Department of Mathematics,
University of Rhode Island {Consultant)

L. T. Einstein

R. H. Mellen

Henry Weinberg

Among the twenty-one lectures at the workshop was a set of six surveys of

various aspects of the field. Those surveys were presented by five members and one
former visiting member of the Courant Institute of Mathematical Sciences, New York
University. They were prepared with the intention that they would be expanded,
combined and published together as a general survey of the mathematical theory of
underwater sound propagation. These notes are the result. They would not have
appeared without the untiring effort of Professor John S. Papadakis, who guided
them through the editorial process. I wish to thank him particularly for this. I

also thank the entire committee for having asked me to present a set of survey

lectures, and for then agreeing to let me share the presentation with my colleagues.

Joseph B. Keller
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CHAPTER T

SURVEY OF WAVE FROPAGATION AND UNDERWATER ACOUSTICS

Joseph B. Keller
Courant Institute of Mathematical Sciences
New York University

251 Mercer Street
New York, NY 10012

1. Introduction

Underwater acoustics, the science of sound propagation in the ocean, has been
developed extensively during the last forty years in response to practical needs,
By now the theory is so well developed that it provides =2 general understanding
and s detailed descripiion of how sound travels in the ocean, and of the
Mechanisms affecting it. The theory can also be used to make gquantitative
caleculations of the sound field produced by & given source. However, there are
difficulties which limit the accuracy of such calculations. The first is the lack
Of adequate informetion about the sound velocity in the ocean as a function of
Position and time. The second is the analytical and computetional difficulty of
calculating the sound field in terms of the properties of the ocean. The
mathematical methods which have been devised to overcome this latter difficulty
&re the subject of these notes.

The amnslysis of underwster sound propsgation is based upon the physical
Principles éf theoretical accustics. These principles lead to & wave equation for
the acoustic pressure, together with suitable boundary conditions at the ocean
Surface and bottom, and initial conditions. The properties of the ocean which

enter into this formulation are the sound speed c¢(x,¥y,z,t) , the bottom depth h(x,y),



the surface elevation n(x,y,t) and the ambient water velocity u(x,y,z,t).
Absorption, which results from viscous dissipation, heat conduction, chemical
reaction, scattering by particulate matter, ete. is usually accounted for by an
absorption coefficient which depends upon position and frequency. In the analysis
of time harmonic fields it is combined with the sound speed to yield a complex
refractive index. Absorption by the bottom is usually accounted for by e bottom
impedance, or sometimes by a bottom reflection coefficient.

Most of the theoretical analyses ignore the surface elevation, the ambient
water velocity, and the sbsorption in the fluid and in the bottom. Some of these
effects are taken into account afterwards in an ad hoc manner. For the most part we
shall follow the common procedure of ignoring them.

Initially, the theory concerned the deterministic problem of propagation in an
ocean of prescribed constant or gradually varying properties. However, as experi-
mental technique improved, it was found that the observed sound field undergoes
extensive and rapid fluctuations. These fluctuations are caused by fluctuations in
the properties of the ocean. To analyze them the ocean is represented as a random
medium, and the problem of sound propagetion in & random medium is considered. The
theory of this kind of propagation is not as well developed as that of propagation
in a deterministic medium, as we shall see. We shall first describe the theory of

the deterministic case and then describe that of the random case.

2. Wave propagation in a deterministic medium

Let us consider first the simplest case, that of a time harmonic point source in
an unbounded homogeneous ocean. The resulting sound field is a spherical wave.
Secondly, suppose the ocean is bounded above by & horizontal plane free surface on
which the acoustic pressure p vanishes. Then p is the sum of two spherical waves,
one from the source and another from the image of the source in the plane surface,
multiplied by the reflection coefficient R = -1 . The interference between these
two waves leads to an oscillation in the magnitude of p which is sometimes
referred to as the Lloyd mirror effect. Thirdly, let the ocean be bounded above by
g horizontal plane free surface on which p = 0 eand below by a horizontal plane

bottom on which the normal derivative 9p/dn = 0. Then p is the sum of an



infinite number of spherical waves from the source and from an infinite set of images
of it in the two planes.

The image method of constructing p , which leads to the above results, does not
generalize to the case of an inhomogeneous ocean nor to the case of non-planar
boundaries. Furthermore, at horizontal distances from the source which are large
compared with the depth, many of the spherical waves have nearly the same phase, or
arrival time. This makes it difficult to calculate p Dbecause the successive waves
nearly cancel one another.

These disadvantages of the image method can be overcome, in part, by the method
of normal modes, which was introduced and developed by C.L. Pekeris [1]. That method
applies to any horizontally stratified ocean of constant depth. It leads to a
Tepregentation of p as the sum of an infinite number of normal modes. Only a
finite number of them are propagating and the rest are evanescent. Thus, at large
distances from the source only the propagating médes are important, so there p is
represented by a finite sum.

The method of normal modes is restricted to horizontally stratified oceans of
constant depth. Furthermore, at distances from the source which are not large
compared with the depth, the evanescent waves are not negligible, so many of them
must be taken into account in calculating p.

The latter difficulty, but not the former, can be overcome by the Hankel
transform method, which was utilized by L. Brekovskikh [2] and others. This yields a
Tepresentation of p as an integral involving Bessel functions and solutions of the
normal mode equation. Although this integral is convenient for evalustion at short
ranges, it is not so convenient at long ranges, where the normal mode representation
is more useful.

A third representation of p in a horizontally stratified ocean of constant
depth is given by the method of multiple scattering. This method is a generalization
of the image method from the case of a homogeneous ocean to that of a horizontally
stratified one. In it p 1is represented as a sum of waves: one wave emerging
directly from the source, another wave which represents scattering of the direct
wave by the medium above the source, & third wave which results from scattering of

the direct wave by the medium below the source, and successive multiply scattered



waves. Scattering includes both reflection by a boundary and refraction by the
inhomogeneous medium. In the case of a homogeneous ocean, refraction is absent and
scattering is only reflection. In this case, the multiple scattering representation
reduces exactly to that given by the image method.

Since the three representetions of p described above are all exact, they
all yield the same value of p. Furthermore, each representation can be converted
into either of the other two. In addition, each representation can be simplified
by conversion into an asymptotic form which is valid when the scoustic wavelength
is small compared to the distance over vhich the sound speed varies appreciably.

The asymptotic forms can also be converted into one another.

The asymptotic form of the multiple scattering representation has an inter-
pretation in terms of the rays of geometrical acoustics. The asymptotic form of an
n times scattered wave is Just the geometrical acoustics field on & ray which has
been reflected and/or refracted n +imes. Therefore, this asymptotic form is
called the ray representation. It has two important advantages over the other
representations, which we shall now describe. The first is that it provides a
geometrical and physical picture of how propagation occurs, and it shows where the
sound goes. The second advantage results from the fact that the ray representation
can be derived directly without the restriction to a horizontally stratified ocean
of constant depth. Therefore, a ray representation can be obtained for a general
ccean with horizontal as well as vertical variation of sound speed, and with depth
variation.

A more refined asymptotic analysis also yields surface diffracted rays. These
rays are produced at the ocean surface and bottom by refracted rays which are
tangent to those surfaces. They travel along the surface or bottom within the ocean
and refract back into the interior. In addition, if propagation within the bottom
is considered, and if it is faster than that in the ocean, the asymptotic analysis
yields & head wave. It is associated with rays which hit the bottom at the eritical
angle, travel in the bottom along the interface, and re-enter the ocean at the
critical angle. We shall not consider these effects nor shall we consider the con-

sequences of using an impedance boundary condition on the bottom.



The ray representation also has two disadvantages. The first is that it
becomes infinite on the caustic surfaces of the rays, and is invalid there.
Consequently, a different representation, such as a boundary layer expansion

employing Airy functions, must be used on and near each caustic. Alternatively

the wniform representation, introduced by D. Ludwig [3] and by Yu. A. Kravtsov [4],
can be used both near and away from each caustic. The second disadvantage is that it
is difficult to evaluate numerically the expression for the amplitude on a ray in the
general case,

A second method for taking account of horizontal and temporal variations in
Sound speed and bottom depth employs a combination of normal modes and horizontal or
two dimensional rays. Each normal mode is assumed to propagate independently of the
others. Tts horizontal veloéity at each point x,y on the surface is determined by
the vertical sound speed profile and the depth beneath that point. This horizontal
veloeity is used in the construction of horizontal rays, which determine where each
normal mode travels. The amplitude of each mode is determined by a transport
€quation along each horizontal ray.

The construction of the sound field by this method proceeds as follows.

First, the vertical structure and horizontal velocity of each normal mode must be
found at each point x,y. Second, for each mode, the horizontal rays which start
from the point above the source must be found. Third, the initial amplitude of each
normal mode on each rey must be determined from the source strength distribution.
Fourth, the phase and asmplitude of each normael mode must be found at each point on
each horizontal ray, starting with the values at the point sbove the source. Fifth,
beneath any point x,y the sound field is given by the sum of the normal mode
functions at that point, each with the phase and amplitude determined from the
corresponding ray from the source to x,y.

This method can be derived systematically from the assumptions that the
horizontal‘and temporal gredients of sound speed and bottom depth are small. The
derivation also yields corrections to the theory if the gradients are not so small.
This type of theory and its derivation were introduced in 1958 by J. B. Keller [5] in

the analysis of surface waves in water of nomumniform depth. For underwater sound it



was introduced by A. D. Pierce [6] in 1965. The systematic derivation of the theory
for this case, together with its implementation and application, were presented by
H. Weinberg and R. Burridge [7] in 197k.

The method of normal modes and horizontal rays enjoys some advantages of each of
the two methods which it combines, and avoids some of their disadvantages. Thus, it
is applicable to oceans with horizontal and temporsl variations in sound speed and
depth, whereas the normal mode method is not. However, the horizontal and
temporal gradients in these quantities must be smaller than is required for the ray
method alone. It avoids the necessity of finding rays in three dimensions and
constructing the amplitudes slong them., But it still fails to be valid at the
caustics, which are now curves in the horizontel plane, and on the vertical lines
through the caustics. Again boundary layer expansions and uniform expansions can be
used on and near these places.

An alternative to the use of horizontal rays together with normal modes is the
use of a horizontal wave equation for the complex amplitude of each normal mode at
%x,¥. This theory is sometimes called NINMA, an scronym for "non-interacting normal
mode analysis". It also can be derived when the horizontal gradients of sound
speed and bottom depth are small. Its advantage over the use of normal modes and
horizontal rays is that it avoids the non-uniformities asssoclated with caustics.

Tts disedvantages are that it requires more computing, since one must solve a wave
equaetion for the amplitude of each mode, and it does not provide the geometrical
picture of where the modes travel, which is provided by the horizontal rays. NINMA
is not described further in these notes.

A third method for dealing with horizontal variations in sound speed and depth
is the parsbolic equation method. This is a method for the approximate description
of time harmonic waves which are propagating primarily in one direction. It was
introduced in connection with electromagnetic wave propasgation by M. Leontovich and
V. A. Foeck [8] in 1946 and adapted to underwater sound propasgetion by F. D. Tappert

and R, H. Hardin [9] in 1973. To illustrate tle method we consider the equation

2
1. pXX + pyy + PZZ + k ng(i)p =0



For g wave travelling primarily in the x direction we write p = elkxq .

and we find that q satisfies the equation
2, q _ + 2ikq + +q  + k2[n2(x)-l]q =0 .
XX X qyy 2z =
We now assume that 9. is small compared to 2ikqX , 50 we drop it and obtain
3. 2ikq  + +q 4+ kz[ng(x}-l]q = Q.
X qyy 2% =

This equation for q is of first order in x and of second order in y and =z ,
like a parabolic equation with x playing the role of time.

The advantage of {3) over (1) is that (3) is easier tc solve numerically. This
is because the parabolic character of {3) permits it to be solved by a marching or
step-by-step method in the x~direction. TIn contrast (1}, being elliptic, must be
solved simultaneously at all values of x. Thié difference makes it possible to solve
Problems involving (3) which it would be impossible to solve, or very difficult to
solve, using (1). In the application to underwater acoustics, the role of x is
Played by the cylindrical coordinate r =and elkX is replaced by the Hankel

function Hél)(kr) .

In order to use (3) or the corresponding equation with r instead of x , it
is necessary to derive initial conditions at x = 0, or r = 0 . These conditions
are obtained by matching the solution of (3) to the solution of (1) near the source.

The practical value of {3) can be greatly improved by using the efficient
numerical methods which are gvailable for the solution of parabolic equations.
Teppert has refined these methods to the point where it is possible to solve (3)
repeatedly with different random choices of n{x) to simulate wave propagation
in a random medium.

The disadvantage of the parabolic equation methed is its limitation to nearly
radial propagation. It is insccurate whenever the rays from the source deviate
appreciably from horizontal straight lines. Therefore, it is not valid if the rays
bend significantly in either a horizontal or a vertical plane, or if the bottom slope

becomes large. However, within these limitations it appesrs to be very useful.



3. Wave propagation in a stochastic medium

The observed temporal fluctuations in the sound field, mentioned in the
Introduction, may be due to temporal fluctuations of the sound speed in the ocean, to
temporal fluctuations in the ambient velocity of the water, and to temporal
fluctuations in the elevation of the ocean surface. To analyze these fluctuations it
is customary to consider each temporally fluctuasting quantity to be & random guantity.
Then the acoustic pressure is the solution of a wave equation in which some coeffi-
cients are random functions, and in which the upper boundary is a random surface.

This treatment of the pressure fluctustions in terms of a stochastic differential
equation with a stochastic boundary raises two problems. The first concerns the
relationship between the solution of this stochastic problem and the observed
pressure. The second problem is the mathematical one of solving the stochastie
problem.

The first problem is usually resolved by tacitly assuming that the statistical
properties of the theoretical pressure will agree with the corresponding statistics
of the observed pressure provided that the statistical properties of the ocean are
chosen properly. In this statement the theoretical problem involves a stochastic
pressure and a stochastic ocean, while the statistics of the observed pressure are
based upon a temporal record end time averaging. Therefore the statistical properties
of the theoretical stochastic ocean should agree with the temporal statistics of the
actual ocean in order to be appropriate. This necessitates the observation of the
gtetistics of the sound speed,of the ambient veloecity of the water, and of the ocean
surface. Considerable progress has been made in this direction, but much more remains
to be done. We shall not consider this problem further,

The second problem is & specisl case of the general one of wave propagation in a
random medium, with the extra complication of a random boundary. There are seversal
reviews of this subject, such as the books of Chernov [10], of Tatarski [11], and of
Klyatskin [12], the articles of Keller [13], of Frisch [14], of Barabanenkov ,
Kravtsov, Rytov and Tatarski [15], and those in the book edited by Keller and
McKean [16]. Other relevant works are referred to in Chapters IV and V. Therefore

we shall present only & brief description of this extensive field. Chapter IV



contains a detailed investigation of a special aspect of it, namely the analysis of
the stochastic equations for the emplitudes of the normal modes of a sound field in
an ocean with a random sound speed.

In principle the stochastic problem cen be formulated by introducing a family of
oceans depending upon a random varisble o , with & probability demsity P{a}. The
solution of the propagation problem for each « yields a pressure p{x,a) which is
also random, since it depends upon «. Then the statistics of p(§,a) such as its
mean, its variance, its two point correlation function, ete. can be calculated using
the solution p{x,a) and the probability density P(a). This procedure can be
described as "solving and then averaging' to get the statistics of p.

A common method of solving for p is the Born expansion, an expansion in powers
of the deviation of the sound speed from a constant. This expansion hes the defect
that any finite number of termsof it leads to divergent results in a statistically
homogeneous medium of infinite extent. Nevertheless Pekeris (see[10]) showed how to
use the first Born approximation to calculate the average energy scattered from a
wave by unit volume of the medium. This determines the total scattering cross
section per unit volume snd the corresponding attenuation coefficient. The latter
can be used to calculate the exponential decay of a propagating wave. His method
also gives the average energy scattered into any direction by unit volume of the
medium, which yields the differentisl scattering cross section per unit volume. The
differential cross section can be used in the transport equation for the incoherent
energy flux in the medium.

The second Born approximstion was applied to a thin slab of the medium by
Keller [13]to determine a modified propagation constant. This constant governs the
Propagation of the average wave. Its imeginary part is Just the atienuation coeffi-
cient obtained by Pekeris. Originslly Rayleigh had used the slab method to find the
modified propagation constant in & medium containing discrete scatterers, such as
dust particles or water droplets.

To overcome the defects of the Born expansion, various methods have been
employed. One of the simplest and most useful is the forward scattering approximstion
to the first Born approximetion. In this approximetion only scattering into the

"forward" half-space is taken into account, 50 the first Born approximation reduces
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to an integral over the region beiween the source and the observetion point. This
simplification leads to finite results, but the scattered intensity increases
indefinitely as the observation point moves away from the source. Thus the forward
scattering - Born approximation is not uniformly valid with respect to the position
of the observation point.

The lack of uniformity of the forward scattering - Born spproximation is partly
overcome by the Rytov method. This is a modification of the Born method in which
log p 1is expanded rather than p. It leads to the same integrals as the Born
expansion, so it also yields divergent results in statistically homogeneous media of
infinite extent. When modified to the forward scattering - Rytov spproximation,
however, it gives finite results. They ere not uniformly valid with respect to the
observation point either, but they are valid to a much greater range than those of
the forward scattering - Born expansion.

Another method of avoiding the divergence of the Born epproximation is that of
summation of a selected infinite subset of terms in the Born expansion. This can be
done for the average of p and for the two point correlation of p, assuming that the
sound speed fluctuations are Gaussian. The terms are usually represented by
Feyrmen disgrems. Then it is shown by disgrammatic means that the sum of the selected
terms satisfies a certain integral equation or integro-differential equation. These
equations are analogous to the Dyson and Bethe-Salpeter equations of guentum field
theory. The introduction of these equations for the average and two point
correlation of p is often called the smoothing method because these equations have
smooth ccefficients.

A much simpler derivation of the smoothing method for the average field was
given by Ament for electromagnetic waves, by Meecham for scalar waves, and by
Bourret for general waves. (See [13]). They averaged the original equation and
replaced a certain average of a product by a product of averages. A direct
perturbation theoretic derivation of this result, for genersl waves, and of that for
the two point correlation function, was given by Tatsrski and Gertsenstein (See
[147), and by Keller [13].

The equation for the average pressure can be solved to yield a modified

propagation constant which is essentially the same as that obtained from the second
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Born epproximation and the slab method [13]. The equation can also be solved with
any source distribution in an unbounded statistically homogeneous medium because it
is translationally invariant. Therefore Fourier transformation leads to an explicit
solution.

Unfortunately it is not so easy to solve the equation for the two point
correlation function of p. As a consequence the correlation function has been dealt
with by other methods which involve further approximations. The forward scattering
approximation is used for this purpose via the replacement of the reduced wave
equation for p by a parabolic equation. Even then the correlation function of the
sound speed fluctuations is usually specialized to an ideal form in order that the
results for the correlation function of p be simple enough to use [11]. See also
Chapter V, references [15] - [21]. Recently Dashen [17] has used the Feynmen path
integral representation of the solution of the parsbolic equation to obtain new

results on the moments and correlation functions of p.
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CHAPTER II

EXACT AND- ASYMPTOTIC REPRESENTATTONS

OF THE SOUND FIEID IN A STRATIFIED OCEAN

Daljit S. Ahluwalia Joseph B. Keller

Courant Institute of Methematical Sciences
New York University
251 Mercer Street
New York, NY 10012

0. Introduction

In the theoretical study of the sound field produced by a source in an ocean, one
model has been investigated very thoroughly. This is the model of a point source in
a horizontally stratified ocean of constant depth. There are two reasons for this.
One is that it represents approximately a real sound source in a real ocean, because
real sources are often small, and because real oceans are nearly horizontally strati-
fied. The other is that it can be asnalyzed by the known techniquesof applied mathe-

matics. As a consequence, this model is the foundation for all studies of ocean

acoustics.
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In view of the importence of this model, we shall analyze it in some detail.
First we shall obtain the exact solution for the acoustic pressure p by three well
known methods, which lead to three different representations of p. These are the
method of normal modes, the method of Hankel transformation and the method of multi-
Ple scattering. Then we shall show how these three different representations can be
transformed into one another by using contour integration and residue evaluation, the
binominl expansion and the Poisson summation formula.

Next, and most importantly, we shall eveluste each of the three representations
asymptotically for the wavelength small compared to the scale length of the sound
velocity profile. These evaluations involve three methods of asymptotic enalysis:
the WKB method for the asymptotic solution of ordinary differential equations, the
Langer modification of this method to treat equations with turning points, and the
method of stationary phase for the asymptotic evaluation of integrals with rapidly
oscillating integrands. The resulting three asymptotic representations are simpler
than the exsct ones snd have clear physical interpretations. Each one is most useful
in a particular range of parameters. We shall also show how these asymptotic repre-
sentations can be converted into one another.

Finelly we shall obtain the ray representation of p. This is a representation
which involves the rays of geometrical acoustics. First we shall cbtein it by
Turther asymptotic eveluation of the asymptotic form of the multiple scattering re-
Presentation. Then we shall show how to get it by a comstruction involving reys,
phase functions, amplitude functions and other conecepts of geometrical acoustics.
Thirdly we shall derive it by direct asymptotic solution of the reduced wave equation
and the corresponding boundery conditions. The last two derivations have the virtue
that they are applicable to an ocean with an arbitrary varistion of sound velocity
with position, and an arbitrary depth variation. It is merely necessary that the
scale lengths of these variations be large compared to the wavelength. However the
practical utilization of the ray representation is computationally difficult in cases

other than that of a stratified ocean of constant depth.
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Much of the work on which this chapter is based is due to C. L. Pekeris and to
L. Brekhovskikh. More extensive accounts, together with various applications and
additional details, can be found in the books of Brekhovskikh [1], Ewing, Jardetsky

and Press [12], Felsen and Marcuvitz [13] and Keller and Lewis [1L].

1. Formulation and fundamental eguations

The velocity u, pressure p, mass density p and entropy density s in an inviseid,

non~-heat conducting fluid satisfy the following equations:

1.1 u, * (uV)u = -0~ op + g+ p'leg .
1.2 Py +V o+ (pu)=0,

1.3 s, +u*Vs=0,

1.b p = p{p,s) .

These are the equations of momentum, mass conservation, adisbatic motion and the
equation of state, respectively. In (1.1) g is the acceleration of gravity and ef
is another external force per unit volume, which represents an acoustic source. The
parameter € is a measure of the strength of this source.

Let us suppose that the fluid 1s bounded sbove by the free surface
z = n{x,y,%t) and below by the rigid surface z = -h{x,y). ILet p, be the constant
pressure sbove the free surface. Then the continuity of pressure across the free

gurface and the kinematic condition at this surface yield

nix,y,t) ,

1.5 plx,y.n{x,y,t),t] = p, on z

1.6 ng +tun +vn =W on z = n{x,¥y,t) .

t ¥

The rigidity of the bottom requires that the normsl component of u vanish on the

bottom:

1.7 W +uh_ o+ vhy =0 on z = -h{x,y) .
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Here u = (u,v,w) and x = (x,y,2z) with the positive z axis pointing vertically up-
ward.

When € = 0, a particular solution of (1.1) - (1.7) is u = 0 end n = O with p,
P and s depending only upon z. These three functions p(z), o(z) and s(z) are re-

lated by {1.4) and the z component of (1.1}, which yields the hydrostatic equation

1-8 Pz = -0g ,

In addition (1.5) yields p(0) = p - Thus one of these three functions, or one addi-
tional relation among them, can be prescribed. Then (1.h) and (1.8} yield the re-
meining two functions. We shall call this sclution the basic state.

We now consider a particular solution of (1.1) - (1.7}, which naturally depends
upon the parameter € in (1.1). We assume that when € = 0, this solution reduces %o
the basic state described above. By differentimting (1.1) - (1.7) with respect to

€ and setting € = 0, we obtain the acoustic equations, which are:

1.9 b =-0"lp + 0%V + 0L,
—t

1.10 5t+v-(pg)=o,
111 S, +u-Vs =0,
1. = p

12 P =Dp,p + PsE
1.13 §+ﬁp_z=o,z=o,
1.1h4 ;]t:{(,z:O,
1.15 w+uh +vh =0, z=-hixy).

x y

Here i, §, etc. denote derivetives with respect to € evaluated at € = 0, while p,

0, s, etc. denote the basic state. We shall call §, B, etc. the acoustic quantities.
It is convenient to obtain e single equation and boundary conditions for p by

eliminating the other acoustic quantities from these equations. To do so we differ-

entiate (1,10) and (1.11) with respect to t, noting that the basic state is inde-

pendent of t. We then use (1.9) to eliminate w, and (1.8) for p,, to obtain

1.16 Py - bp -gp, =~V L
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. 1,5 .1
1.17 8, = P (pz+gp)sz = wp szf3 .
Now we differentiaste (1.12) twice with respect to t and use (1.16) and (1.17) in the
resulting egquation to get
Oz .

. R . =1 . .
1.18 Pey = PP = -pV ¢ £+ p7ps, (p +gp-Ty) + v,

In ocean acoustics, all the terms on the right side of (1.18) except the first one
are usually negligible compared to the other terms. When this is the case, (1.18)

can be replaced by the wave equation for i:

1.19 M- b, =V-z.
c

Pt
Here c2 = PO is the sound speed, which depends only upon z because the basic state
depends only upon z.

In the boundary condition (1.13) the term ﬁpz is equal to -pgﬁ in view of

(1.8), and this term is usually negligible compared to p. Then {1.13) becomes
1.20 P=0atz=20.

Finally we differentiate the bottom boundary condition(1.15) with respect to t and

use (1.9) to eliminate ét' As before, we assume that the term 9-25Vp = —0'155 is

negligible, and also that f = 0 at the bottom. Then (1.17) yields

1.21 P, + b, +Ph =0 atzs= -h{x,y} .

The wave equation {1.19), together with the two boundary conditions (1.20) and
(1.21), plus the specification of the initial values of p and of ﬁt’ constitute an
initial-boundary value problem for ﬁ(z,t). Once p is found, the other acoustic
quantities can be found from (1.9) - (1.11) and (1.14), provided that their initial
values are given. 1In order to find é it i3 necessary to know the sound speed c{z),
the bottom depth h{x,y) and the source distribution V + f£(x,t), in addition to the
initial values of 5 and it' We shall assume that these quantities are known, and

consider the methods of solving the problem for ﬁ '
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2, Time harmonic waves

The most important acoustic fields are the time harmonic ones, in which p is of

the form
2.1 Blx,t) = e % (x) .

Here and hereafter it is to be understood that ﬁ or any other real quantity is the
real part of s complex expression for it, such as that on the right side of (2.1).
The complex pressure emplitude p(x) will be referred to as the pressure for short.
It is not to be confused with the pressure in section 1, which is denoted by the

same letter, but which will not appear again. In order that (2.1) satisfy (1.19),

V * £ must be of the form
2.2 Ve fix,t) =e

When (2.1) and {2.2) hold, then (1.19) - (1.21) become

2.3 Ap + kene(z)p = q(x)

2.4 p=0 at z=0,

2. = = - .
5 P, * thx + pyhy 0O at 2z h(x,¥)

In (2.3) we have introduced the wavenumber k = w/c  and the refractive index
n = co/c(z), where c is some typical value of the sound speed. We call (2.3) the
reduced wave equation or sometimes the Helmholtz equation.

The boundary value problem (2.3) - (2.5) does not determine p uniquely. This
is because the homogeneous problem, obtained by setting q(x) = 0, has solutions
vhich represent waves coming in from infinity. Therefore some additionel condition
must be imposed in order to eliminate these extraneous waves and determine & unique
solution. There are three different methods for doing this, which we shall now
describe., The first and physically most appealing, is to solve the initial value
problem with the source given by (2.2) and with p =D, = 0 at t = 0. This problem

hes a unigue solution p{x,t), which we expect to approach the form (2.1) as t + =,

Therefore we define p{x) by
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iwt

2.6 plx) = lim e ﬁfégt) .
too

It can be proved that this limit exists and that it satisfies {2.3) - (2.5).

The second method is to replace k by the complex quantity

2.7 k=->+ia, a>0.

o
The positive constant o represents absorption, and therefore the desired solution
of {2.3) - (2.5) will decay to zero at infinite distance from the source region.
An incoming wave, however, will be infinitely large at infinity in the direction
from vwhich it comes. Therefore the reguirement that the solution be bounded at
infinity should eliminate incoming waves and pick out a unigue solution p(x,a),
which depends upon 0.. Then as o tends to zero, this solution should tend to a
limit. Thus we define p(x) by
2.8 p(x) = lim p(x,a)

o0

It can be proved that p(g,a) exists and is unique, that this limit exists and that
it satisfies {2.3) - {2.5) with o = 0. Furthermore it is the same solution as is
given by (2.6).

The third method deals directly with (2.3) - (2.5) keeping k real. It is to
impose s radiation condition on the solution, which directly eliminates incoming
waves and thereby selects a unique solution. The precise form of this condition
depends upon the number of space dimensions, the shape and depth of the domain, etc.
In the present case it involves the normal modes and eigenvelues of the problem, so
we shall not formulate it until we Introduce those quantities. It can be proved
tnet this method also yields a unique solution p(;) which is the same as that given
by (2.6) and (2.8)., The fact that the limit in (2.6) yields the same solution as
the method using the radiation condition is sometimes called the limiting amplitude
principle, while the fact that (2.8) yields the same solution is called the limiting
absorption principle. Thus any one of these methods can be used to find the desired
solution p{x), which we shall call the radiating or outgoing sclution.

There is actual abscrpiion of sound in the ocean due to viscosity, heat conduc-

tion and chemical remction, all of which we have ignored in deriving (2.3). This
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ebsorption can be accounted for by writing k in the form (2.7) with o(w) a function
of frequency determined by the dissipative processes. When this absorption is taken
into account, the correct solution p(x) is selected by the requirement that it be
bounded st infinity. Then the radiestion condition is not necessary. Furthermore the
time dependent equation corresponding to the reduced wave equation {2.3) with k given
by (2.7) is not just the wave eguation {1.19), but is a more complicated equation or
system of equations.

The time harmonic solutions (2.1) can be used in a Fourier integral to synthe-
size the solution of (1.19) for a source with arbitrary time dependence. This
accounts in part for their great importance. Thus suppose that V ¢ f has the Fourier

representation
2.9 v '.E(E’t) = f e"lwtq{fﬁm)dw .

Then if p(x,w) is the outgoing solution of (2.3) - (2.5) with the source g(x,w), the

solution of {1.19) - (1.21) is
2,10 p(x,t) = J e-lwtp(_)g,w)dw .

Furthermore, the solution for an arbitrary source distribution q(x,w) can be obtained
from the solution for a point source, represented by a delta function. Therefore we

shall consider the solution of (2.3) with q(x) = -§(x-x_) .

X
-0

3.  The homogeneous ccean of constant depth

3.1 Introduction
The simplest sound velocity profile is the uniform cne c(z) = ¢ s Where c is a

constant. In this case n{z) = co/c(z) =1, and for a point source (2.3) becomes

§{r)
2nmr

3.1 Ap + k2p = -6(z-zo)

Here the source location zb is r=0, 2= Zo’ in cylindrical coordinates. The sur-

face condition is (2.4),
3.2 P:O at z=0.

We shall assume that the depth is constant so that h = constant, and (2.5) becomes
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BVP

BINOMIAL
EXPANSION RESIDUE

RAY HANKEL 3 MODE

POISSON SUMMATION

Figure 1. The boundary value problem (BVP) is solved by the method of normel modes,
by the method of Hankel transforms and by the ray method. This lemds to the three
representations denoted by mode, Hankel and ray, respectively. Then the representa-
tions are transformed into one another by the method of residues, by the binomial ex-

pansion and by the Poisson summation formula, as indicated.

COMPLEX a-PLANE

(]

1 extends from the origin to infinity and is
slightly below the real axis in the a~plane. The contour 02 is e“Cl with the orien-

Figure 3. The contour of integration C

tation reversed. The sarc PR of radius R connects Gl and 02 to form a closed contour.
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3.3 p, =0 at z=-h.

The problem (3.1) - (3.3), with a suitable radiation condition, determines the sound
Pressure due to a time harmonic point source in a homogeneous ocean of constant
depth with a free surface snd a rigld bottom. Since the problem is axially symmet-
ric, the solution p(r,z) is independent of the engular coordinate 6.

In the next three sub-sections we shall solve this problem by three different
methods and obtain three different representations for the solution. Then in the
final sub-section we shall show how these representations can be transformed into

one another. All of these results are summarized in Figure 1.

3.2 Normasl mode representation

The homogeneous form of (3.1) can be solved by separation of veriables. To use
this method we seek & solution which is a product ¢{z)¥(r). We substitute it into

the homogeneous form of (3.1) and separate variables to obtain

3.4 o, + K% = x%a% ,

3.5 P+ %’W = -kaagw .

We have written the separation constant as ka for convenience. The general solu-
tions of these two eguations are

3.6 6(z) 2y1/2 2y1/2,q

Asin[k(1l-a 2] + Beos[k(1l-a

s

3.7 Yir)

CHC()l)(ka.r) + Dﬁge)(kar) )

Here Hél) and Héz) are the Hankel functions of order zerc of the first and second
kinds, respectively.

The boundary conditions (3.2) and (3.3), when applied to the product solution
¢(2)¥(r), yield the two equations ¢(0) = 0 and ¢ (~h) = 0. From the first condition
it follows thet B = 0. Then the second condition yields cos[kh(l-aa)lla] = 0. The

solutions of this equation are a = a  vhere

3.8 8 = 1 - (n+%)2 (£%)2]1/2 , n = 0,1,2,¢%¢
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Thus there are infinitely many solutions of the form {3.6) satisfying (3.2) and

{3.3), which we shall denote by ¢n(z), where
_ 21/2 ot
3.9 ¢ (z) = Ansin[k(l~an) z] , n=0,1,2, .

Here An is a constant which is not yet determined.
To determine one of the constents in {3.7) we shall utilize the radiation con-

dition. The appropriste form of this condition to select the outgoing weve is
3.10 1im /20y ~ixap) = 0 .
T r

When (3.7) is substituted into (3.10), the result is D = 0, so the outgoing solution
is just a multiple of Hél)(kar). Since the product soclution ¢nw already contains
the arbitrary constant factor An’ we can set 0 = 1 with no loss of generality. Then
the product solution which satisfies the boundsry conditions and the radiastion con-
aition is A _sinlk(1-a2)1/%] Hél)(kanr}.

Bach of these product solutions is called a "normal mode", or just a '"mode" for
short. It is said to be propagating if e is real and positive, and non-propageting
or evanescent if a is pogitive imaginary, because then Hél)(kanr) decays exponen~
tially &s r increases. From (3.8) we see that there are only M+l propagating modes,
where M is the greatest integer less than ﬂ_lkh - %—, and infinitely many evanescent
modes.

Now to find p we represent it as a sum of modes:

5 2y1/2, 4 4(1)
3.11 plr,z) = HZO A sin(k(1~e )" "2} H~'(ka r) .
We substitute (3.11) into {3.1), using the fact that

2 \
] 13 22 }.(1) _ LS (r)
3.12 { 5;5 + vy + k e }HO (kanr) = o

Then (3.1) becomes

o

3.13 A sin[k(l-e
On

2)1/2
n= n

%] = %‘6(z-zo) .

_ai)l/2z and integrate it from

Teo solve {3.13) for A we multiply (3.13) by sin k(1

z = ~h to z = 0, This yields
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4 2.1/2
3.1h A = o sin[k(l-an) zo] .

By using {3.14) in (3.11) we finally obtain the normal mode representation of p,

which is

3.15 plr,z) = A sinfx(1-8

2)112
2h n=0 n

. 2,1/2 (1)
20]51n[k(l—an) z]Ho (kanr) .

The pressure p can be convenlently calculated from (3.15), especially when kr
is large. 1In that case the evanescent modes are negligible, and only the finite
number of propagating modes need be used. We also see from (3.15) that p is symmet=-

TiC in z and Z,

3.3 Hankel transform representstion

We shall now solve for p in a different way and obtain a different representa-
tion of the solution. We begin by defining the Hankel transform £(s) of a function

£(r) vy

~ £y

3.16 f(s) = 27 f Jo(sr)f(r)rdr .
0

Here Jo is the Bessel function of order zero. The inverse Hankel transform is

o]

3.17 o) = & f.ro(srms)sas :
0
Now we multiply (3.1) - {3.3) vy eﬂJo(kar)r and integrate both sides of esch

Squation from r = 0 to r = . In doing so we write p  + r—lpr = r.l(rpr)r in (3.1)

and ve denote the transform of p{r,z) by p{s,z). Then we obtain

0
- o
3.18 on j Jo(kar)(rpr)rdr + pzz(ka,z) + x“plka,z) = —é(z—zo) .
0
3.18 p{ka,0) = 0 ,
3.20 §z(ka,-h) =0 .

To evaluate the integral in (3.18) we require p to satisfy the radiation condition
(3-10), and we choose & to have & small negetive imaginery part. Then in Appendix

3.3A we show that the integral equals —kaaeﬁ(ka,z) . Therefore (3.18) becomes
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3.21 Ezz + x°(1-22)p = -8(z-z) .

In order to solve (3.19) - (3.21) for p(ka,z) we introduce two solutions of
the homogeneous form of {3.21). One of them, 51, is required to satisfy (3.19) and

the other, 52, is required to satisfy (3.20). Then we can write 5 in the form

3.22 Blke,2) = 7, (ka,2,)p,(ka,z ) /W(ka) .

Here z_ = max(z,zo), 2

= min(z,zo) and W(ka) is the Wronskian of 51 and 52 . Ve
2)1/2

<
X 2,1/2 ~
find readily that p, = sin[k{1-a")""“2], P, = cos[k{1i-a
2\1/2
) / 2)1/2] )

{z+h)]
and W(ka) = -k(l-a cos[kh(l-a
Finally to obtain p(r,z) we substitute the above values of 51, 52 and W into

(3.22) for p and then use {3.17). In this way we get

[~

3.23 plr,z) = - Ji-f 3_(xar)
0

sin[k(1-a2)" 22 Jeos[x(1-a%)"2(z +n)]

ada ,
2)1/2C03[kh(1-'a2)1/2]

2m (1-8

This is the Hankel transform representation of p, from which p can be calculated by

numerical integration.

3.3A Appendix
We shall evaluate the integral in {3.18) by defining it as the limit as R+ ®

of the integral with upper 1imit R. Then integrating by parts twice we get
R R
= - 1
3.2k 2 I Jo(kar)(rpr)rdr 2ﬂJ°(kaR)Rpr(R,z) onka f Jo(kar)rprdr
0 0

ewJO(kaR)Rpr(R,z) - 2WkaRJé(kaR)p(R,z)

R
+ 2nka f [Jé(kar)r]rpdr .
0

When Im & < O, as we assume it to be, then Jé(kaR) ~ iJo(kaR) as R+ = .

Thus
3.25 2nJ (keR)Rp,(R,z) - 2mkaRJ! (kaR)p(R,z) ~ szo(kaR)R[pr(R,z)-ikap(R,z)] .

Because p satisfies the radiation condition (3.10), the right side of (3.25) tends



27

to zerc a8 R + » . Next we use the identity [xJé(x)]' = —xJO(x) in the integral
on the right side of (3.24) to write the integrand as —kaJo(kar)pr . Then the

limit of the right side of (3.24) as R+ » is jJust

—(ka)e f Jo(kar}prdr = ~(ka)25(ka,z) .
0

3.4 Ray representation

A very illuminating expression for p(r,z) is the ray representation, which we
shall now obtain. To obtaln it we first consider the equation (3.1) in the full
three dimensional space, ignoring the boundary conditions (3.2) and (3.3). The gen-

ikR -ikR

eral spherically symmetric solution of (3.1) is pO(R) = Ae" /R + Be /R vhere

11/2

A+B=1/47r and R = [r2+(z—zo)2 denotes distance from the source. To eliminate

the incoming wave e_lkR/R we impose the radiation condition

3.26 1im R{p'(R)-ikp (R)] = 0 .
Ry © °

This condition yields B = 0 eand thus the outgoing spherically symmetric solution of

{3.1) in the whole space is
3.27 p,(R) = ¥ umr

We can interpret the exponent in (3.27) as ik multiplied by the phase function
R. This phase equals zero at the source and increases like the distance along a
straight line from the source to the field point. We call this straight line a
"ray". The factor 1/R, which multiplies the exponentiasl factor, is called the ampli-
tude. It decreases like the reciprocal of the square root of the cross-sectional
srea of a tube of rays, since thet area increases like Re. As a conseguence the
product of the square of the amplitude multiplied by the cross-sectional area of a
ray tube remains constant along a ray. This constancy expresses the fact that
energy is conserved within & ray tube. These two facts sbout the spherical wave
(3.27) — linear increase of phase along a ray and energy conservation in a ray tube —
can be used to construct the ray representation of other waves, as we shall see.

Let us now use these considerations to solve the original problem (3.1) -(3.3).
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{r, z)

%o

~h P /

~2h—zg | /

—~2h+ee

Figure 2. A point source located at z = zZg emits rays in all directions. The four

reys shown here all arrive at the field point (r,z). One of length R is the direct
rey; another of length R' is reflected from the top surface z = 0 and appears to come
from a source at z = =24 A third ray of length R" is reflected from the bottom sur-

face z = -h and appears to come from & source st z = -2h-3z The fourth is reflected

0
first from the top and then from the bottom, and appears to come from & source at

= + .
-4 2h zo
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We begin with the spherical wave pO(R) given by (3.27), which satisfies (3.1) but
does not saetisfy the boundary conditions. VWhen the rays associated with po hit the
upper boundery z = 0 , they produce reflected rays determined by the law of reflec-
tion. The phase and amplitude on each reflected ray can be found by the preceding
considerations, starting with the values of the phase and amplitude on the incident
ray at the point of reflection. In addition the reflected amplitude must be multi-
plied by & reflection coefficient equal to -1 in order that the sum of the incident
and reflected waves satisfy the condition p = O on 2z = 0. Since all the reflected
rays appear to come from the image source at r = 0, z = =2 this construction leads
to a reflected wave which is Just the spherical wave -eikR’/hnR'. Here R' is dis-
tance from the image source. (See Figure 2.)

A similar construction applies to the reys reflected from the bottom. However
the reflection coefficlent for bottom reflection is +1 because the incident end re-
flected waves must combine to satisfy p, = 0 at z = ~h ., Furthermore the immge
source is at z = -z - 2h . Thus the bottom reflected wave is eikR"/hﬂR" where R"
is distance from the image of the source in the bottom.

Multiple reflection of the originally reflected rays gives rise to an infinite
sequence of families of rays, each of which appears to come from an image point.
These points sre at z = tzo + 2nh, n = 0,31, =»=* . By keeping track of the number
of reflections from the top and bottom, we find the following expression for the
total field p, which is the sum of the incident wave plus the singly and multiply
reflected waves:

211/2

eik[r2+(z—zc-2nh)2]l/2 eik{r2+(z+zg—2nh)

@«

3.28  plr,z) = & -1)" -
pir,z kr Z_m [r2+(z-zo-2nh)2]l/2 [T2+(Z+Zo'2nh)2]l/2

This is the ray representation of the solution p .

The result (3.28) can also be derived directly by considering the successive
images of the source point in the top and bottom surfaces, without considering the
rays. Thet method of derivaetion, which is limited to plane boundaries and homoge-
neous media, is called the image method. We shall also refer to (3.28) as the

multiple reflection representation of p, because each term in it except that with
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n = 0 represents a wave which hag been reflected a number of times from the top and

bottom boundaries.

3.5 Connections between the representations

We have now obtained three representations of the solution plr,z) of (3.1) -
{3.3). This solution determines the acoustic pressure due to a time harmonic point
source in a homogenecus ocesn of constant depth with a rigid bottom. The normal
mode representation (3.15) is most useful at distances which are far from the source
compared to the ocean depth, i.e. at distances r > > h ., Then only the propagating
modes need to be taken into account, and there are only a finite number of them. On
the other hand the ray representation (3.28) is most useful near the source, where
only the incident field and the first few reflected waves need to be considered be-
cause the other waves are much weaker due to spherical spreading. The Hankel trans-
form representation (3.23) is most useful at intermediate distances. Of course all
three representations are valid everywhere, but they are not equally convenient for
calculation everywhere.

Since all three representations yield the same solution, they mus{ all be equal.
Therefore it must be possible to convert each representation into the other two re-
presentations. This is indeed the case, as we shall now show. The demonstration
will lead to additional insight into the mathematical structure of the solution, and
clarify the relation between rasys and modes. Furthermore it will introduce methods
of analysis which will prove useful in treating more complex problems.,

Let us begin with the Hankel transform representation (3.23) in which we set

= L{1),.{(2) X
3 = 2(Ho 35 } to obtain

o

3.29 pir,z) = - %f [Hél)(kar}miz)(kar)]
0

sin[k(l—ae)1/2z>}ccs[k{l~a2)1/2(2<+h)}
)112 )112]

ada

(1—&2 cos[kh{l~a2

Since all the functions in the integrand of {3.29) are analytic functions of a, we
may interpret the integral as a line integral in the complex a plane. Therefore we
can shift the path of integration to a contour Cl from the origin to infinity

slightly below the real axis out to some large real value of a, and then along the
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axis. (See Figure 3.) Then we use the fact that Hée)(kar) = -Hél)(kaei“r) to con-

(2)

vert the integral involving H along the contour Cl to an integral involving

o

-Hél) along eiﬂcl . By taking account of the minus sign multiplying Hél) , and of
the orientation of eiﬂcl , we can write (3.29) in the form

. W, )sin[k(l—a2)1/22}]cos[k(l-a2)l/2(z<+h)]
3.30 pl{r,z) = - f H kar ada .

L &+ °e (l—a2)l/zcos[kh(l-az)llz]

172

Here Ce is elwcl with the orientation reversed.

We now close the contour Cl + CE with & semi-cirele FR of radius R in the
upper half-plane. (See Figure 3.) In the limit as R + = , the integral {3.30)
over PR tends to zero, so in this limit the value of the integral is unchanged. Thus

we can rewrite (3.30) as

3.3 pi{r,z) =- g%- 1lim I ses da ,
R Q. +C 4T
172

The denominator of the integrand in (3.31) vanishes at a = t1 and at the zeroces of

cos[kh(l—aQ)l/z] These zeroes are given by (3.8), and they are the poles of the

integrand within the contour. The numerator vanishes at a = *1, so these points are

not poles. Then the residues of the integrand at the poles yield

o Hc(,l)(kanr)sin[k(l—&i)1/25>}°°s[k(l'8‘221)1/2(z<+h)]

3-32 ( 3 )= - k 2ni ‘
pir,z Ly “™ nZo khsin[kh(l—ai)ljal

To simplify (3.32) we note that cos[k(l—ai)l/g(z<+h)] = cos[k(l—aj)l/ez<]

cos[k(l-ai)l/eh] - sin[k(l—a:)l/2z<]sin[k(l-a§)l/2h] , and in view of (3.8),
cos[k(l—aﬁ)llzh] = 0, Upon using these facts in (3.32), we find that (3.32) becomes
exactly (3.15), which is the normal mode representation.

This calculation provides a derivation of the normal mode representation from
the Hankel transform representation. 8Since all the steps in the calculation are re-

versible, by reversing them we can derive the Hankel transform representation from

the normsel mode representation. These two derivetions provide the connections between
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the Hankel transform and normal mode representations, labelled “"residue" in Figure 1.
Next we shall show how to convert the ray representstion (3.28) into the normal
mode representation (3.15). We begin by rewriting (3.28) in the form p{r,z) =

P(r,z-zo) - P(r,z+zo) where

l/z-inw

/2 :

1

o eik[r2+(z-2nh)2]
3.33 Plr,z) = e

ne—o  [r°+(z-2nh)2]

Next we rewrite the sum in (3.33) by using the Poisson summation formula [Morse and

Feschbach, Methods of Theoretical Physics, p. 467, eq. (4.8.28) with a = 21}

<0

f A

-00

oo [~

3.3 I f(em) = 5=

N=e0 q=__°°

Upon using it in (3.33) we obtain

L@ f’" JIK[r?+(2-0/m 27 2 18/2 108

3.35 Pir,z) = =3
r 8’!72 qz_w [r2+(z_£h/w)2]l/2

ag .

.+

To evaluate the integral in (3.25) we set t = z - Eh/7 and get

@ —i(gDmm/m 0 k(2D 2 (@D en/m
3.36 P(r,z) = E%H T e LiatprE { R 2 (+202)"1/ 24
q=-OD T
, © «i(q+£)zﬂ/h 1/2
=& ! 2 Hél)[kr[l-([q%]w/kh)z] ] :

q:_.w

(1)

o glven in Appendix 3.5A.

Here we have used the integral representation of H
We now use (3.36) for P in the relation p(r,z) = P(r,z-zc) - P(r,z+zo) . Then
when we express the exponential functions of z and z, as trigonometric functions, we
obtain exactly the normal mode representation (3.15). In this way we can convert the
ray representation (3.28) into the normal mode representation (3.15). Since all the
steps in this calculation are reversible, the calculation also shows how the ray re-
presentation can be cbtained from the normal mode representation. These calculations

yield the connection labelled "Poisson summaticn” in Figure 1, between the ray and

mode representations.



a3

Finaelly we shall derive the ray representation from the Hankel transform repre-
sentation {3.23). To do so we express the trigonometric functions in (3.23) in terms
of exponentials and multiply them together to obtain four terms in the numerator.
2)1/2

After dividing numerator and denominator by exp[ikh{l-a ] , we can write the re-

sult in the form
3.37 plr,z) = Qlr,z +z ) - Qlr,-[z +2 +2n]) - Qlr,z -z,)

+ Qr,-[z -z +2n]) .
Here Q{r,z) is defined by

o

3.38 alr,z) = %%-I J (kar)e
o]

-1

ix(1-a2)/2; [l+e-2ikh(l—52)lf2} (1-2)"2gan .

—2ikh(l—a2)l/2 -
We now use the binomial expansion of the factor |l+e in
(3.38) and interchange integration and summation, which is valid, to obtain

L

. o«
3.39 alr,z) = %% 7 (-0)° J J_(kar)e
n=0 2

ik(l~ae)l/2(z-2nh)(l_&2)-1/2ad& ‘

The integral in (3.39) is evaluated in Appendix 3.5A. When the result {3.45) is used

in (3.39) 1t yields

3.40 alry) =3 T ()P z-2am)21 2 e 52 772
n=0
Now ve substitute (3.40) into {3.37) and note that the first two terms in {3.37} com-
bine to yield the last term in (3.28), while the second two terms in {3.37) combine
to yield the first term in (3.28). Thus (3.28) follows from (3.37).
This caleulation shows how the ray representation (3.28) can be obtained from the

Hankel transform representation (3.23). Since all the steps are reversible, it also
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shows how the Hankel transform representestion follows from the ray representation.
Thus this caleulation yields the connection between these two representations,
labelled "binomial expansion" in Figure 1. This completes the demonstration of all
the connections between the representations indicated in Figure 1. Most of the
derivations indiceated in Figure 1 are given by Brekhovskikh {11 Chapter V, who

also discusses various properties of the solution.

3.5A Appendix
The integral in {3.36) can be evaluated by first setting t = r sinh® and

m= {q + %Jﬂ/kh to obtain

00

1/2
(r2+t2)—-1/2dt - I 1kr[coshB+m slnh@]de )

+(q + PImt/in]

3.k

® 1k[(rP+2)
f e

00

2,1/2

2 lfzcosh[9+tanh-lm3 = (1-m

Now cosh8 + m sinh8® = (l-m cosh8! where

6' =0 + tanh”lm . We next rewrite the last integral, simplifying the exponent with

the aid of this relation, and then we set sinhf' = s/r to get

o0 o0

J ik:r(l—mg)lj'ecoshe,deq B j eik(l_mE)l/E( 2 2)1/2
e =

T +s (r2+32)-l/2ds .

3.h42

e -y

According to Magnus and Oberhettinger [2] page 27, the last integral is Just

inﬂgl)[kr(l-mz)llz] , and thus this is the value of the first integral im (3.11).
To calculate the integrel in (3.39) we begin with equations 5 and 6 on page

761 of Gradshteyn and Ryzhik [3] . By adding i times equation 5 to equation 6

we get
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. 2
3.43 j x(x2+22)~l/2elk(x +
0

2,1/2
z%) Jo(kax)dx = (ﬂz/2k)l/2(l-a,2)'1/h

(kz[1-221"3) |, 0<a<1

{-N_l/2(kz[l—a2]l/2) + 134,

= (22/Wk)1/2(a2-1)—l/hKl/a(kz[az—l]llz) , 1<sa.

Next we use the expressions for J_1/2, N_l/2 and Kl/2 given on pages 43T, 438 and 4h3

of Abremowitz and Stegun [47] , in (3.43) to obtain

> 2
344 j x(x2+22)~1/2ezk(x +z

0

2)1/2

s 241/2
I, (xax)ax = 2= e

(1-a2)~1/2,1kz (-2

Since (3.44) is of the form (3.16), it is a Hankel transform. Then the inverse

Hankel transform (3.17) yields

o

3.45 J (l_&E)-l/eeikz(l—
0

B2>1/2 2)1/2

: 2
Jo(kax)ada = %{x2+22)—l/2elk(x *a

The left side of (3.45) is the integral in (3.39), so (3.45) is the desired evaluation

of it.



36

L,  The inhomogeneous stratified ocean of constant depth

4.1 Introduction
We shall now consider the acoustic pressure produced by a time harmonic point
source in a stratified inhomogeneous ocean of constent depth. If the source location

%, is teken to be v = 0, z = z in cylindrical coordinates, then (2.3) becomes
b1 bp + K0P (2)p = =8 (z-2 )8 (x)/2mr .

The surface condition is (2.4),

4. 2a8 p=20 at z =20,

Since the depth h is constant, the bottom condition (2.5) becomes

4.2b p =0 at z=-h,

We seek that solution of (4.1) - (4.3) which satisfies a suitable radiation condition,
which we shall state explicitly later. Since the problem is axially symmetric, the
solution p{r,z) is independent of the angular coordinate 6 .

Just as in section 3, we shall obtain three representations of the solution.
The normel mode and Hankel transform representations are similar to the corresponding
ones of section 3, while the multiple scattering representation corresponds to the
previous ray representation. This representation involves the effects of upward and
downward refraction due to inhomogeneity, as well as the effects of reflection from
the top and bottom. We use the term "scattering" in describing it to indicate that it
includes both of these effects. The ray representation of section 3 involved only re-
flection, because the ocean was assumed to be homogeneous. The three representations
are indicated in Figure h4.

After obtaining the three representations, we shall show how they can be trans-
formed into one another. These transformations are also indicated in Figure 4. Then

in seetion 5 we shall obtain asymptotic expansions of these representations. They
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ASYMPTOTIC MULTIPLE 55 55
SCATTERING ASYMPTOTIC o ASYMPTOTIC
- HANKEL TRANSFORM - NORMAL MODES
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BINOMIAL EXPANSION

& RAY METHOD
6.5 POISSON SUMMATION

RAY REPRESENTION
OR SIMPLE ASYSMPTOTIC FORM

The boundary value problem is solved by the method of normal modes in sub-

Figure h.

section 4.2, by Hankel transformation in 4.3, and by the multiple scattering method in

4,4, This yields the three representations indicated by normal modes, Hankel trans-—

form and multiple scattering, respectively.
Then with the aid of the WKB method, asymptotic forms of

These representations are transformed

into one ancther in 4.5.

these representations are obtained in 5.2, 5.3 and 5.4. They are converted into one

another in subsection 5.5. A simpler asymptotic form of the multiple scattering re-

presentation is deduced in 5.4.1. This same representation is derived directly by

the rey method in section 6.
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lead t0 & better understanding of the solution and are also useful for calculation.

4.2 Normel mode representation

As in sub-section 3.2, we shall seek the solution p(r,z) of (4.1) end (4.2a,b)
as & sum of normel modes. Fach normel mode is s product solution ¢(z)Y(r) of the
homogeneous equations. Substitution of such & product into the homogeneous form of
(4.1) and separation of varisbles yields the two equations
2

4.3 ¢, * k2n2(z)¢ = kg

b,

-1, _ .22
L.h Vo + ¥, = k'8 Y.
The separation constant has been written as ka for convenlence. When the product

solution is substituted into the boundary conditions (4.2a,b) , they become
L.s ¢(0) =0, ¢,(«n)=0.

The problem {4.3) end (4.5) has an infinite number of simple real eigenvalues
ag > af > ag > s+e and corresponding eigenfunctions ¢0,¢l,°'- which form a complete
orthogonal set. There are a finite number of positive eigenvalues and infinitely
meny negative ones, with ai tending to -® as n increases. We shall take &, >0 if
aﬁ >0end Ima >0 if ai < 0 . Then the solution Y(r) of (h.4), which satisfies
the redistion condition (3.10) with a = a., is a constant multiple of Hil)(kanr} s
Just as in sub-section 3.2. Thus the normal modes are An¢n(z)Hél)(kanr) , where
An is an arbitrary constant.

In view of the completeness of the ¢n(z), we can write p{r,z) in the form

4.6 plr,z) = nZOAntbn(z)Hél)(kanr) i

To find the A ve substitute (4,6) into (4.1) and use the relation (3.12) to obtain
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T 2 Ad (z) = Ed(z'zo)

n=0

We now multiply (L4.7) by ¢m(z) and then integrate the result from z = -h to z = 0 .

Becsuse the ¢n(z) are orthogonal, this yields

5.8 Ly (zo)/ $2(z)as

Now {4.6) can be written as
o 0
4,0 pir,z) = %‘ ZO ¢n(z)¢ (z )H(l)(kanr)///f ¢i(s)da .
n:
“h

This is the normal mode representation of plr,z)

Just as in sub-section 3.2, the finite number of terms in (4.9) with a real re-
present propagating modes, while the remaining terms represent evanescent or non-
propageting modes. For kr large, only the propagating modes are significant, so
then p can be calculated easily from (4.9). For all r, (4.9) shows that p is symmet-

ric in z and LI

4.3 Hankel transform representation

Now we shall proceed as in sub-section 3.3 to obtain the Hankel transform repre-
sentation of the outgoing solution of (4.1) and (4.2a,b). First we multiply each equa-
tion by EHJO(kar) and then integrste the result from r = 0 to r = © , We also denote
the Hankel transform of p{r.,z) by p(s,z), In integrating (4.1) we use the result of

Appendix 3.3A. In this way we obtain from (4.1) - (%.3) the transformed equations
~ 2r 2 24~ _
4.10 D, * K [n(2)-"Ip = —6(z-zo) .

k11 p(ke,0) =0 ,

h.12 5z(ka,-h) =0.
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We now introduce two solutions il(ka,z} and 52(ka,z) of the homogeneous form of
{4.10), which satisfy {4.11) and (k.12) respectively. Then the solution of (4.10) -

(4.12) is readily found to be of the same form as (3.22), i.e.
4.13 b(ka,z) = B, (ka,z,)D, (ke,2 ) /W(ka) .

By applying the inverse Hankel transform (3.17) to (4.13) we get

[~

2

b1k p(r,z) = g; J Jo(kar)gl(ka,z>)§2(ka,z<)[W(ka)]-lada .
0

This is the Hankel transform representation of p{r,z), which can be used to calculate

p numerically.

L.k Multiple scattering representation

A third representation of p can be obtained by considering the propagstion of
waves outward from the source, and taking account successively of their refrection by
the medium and reflection by the boundaries. Since both reflection and refraction
are special kinds of scattering, and since they occur repeatedly, we call this the
multiple scattering representation. We shell write it in the form

o«

4,15 plr,z) = } qn(r,z) .
n=0

Here qo represents the direct wave from the source, q; represents a wave which has
been scattered (i.e. reflected or refracted) once, and a4, represents a wave which
has been scattered n times. The series (3.28) for p in a homogeneous ocean is exactly
of the form (4.15) if the terms with #n are combined to yield q, - In that case only
reflection occurs, and the multiple scattering representation becomes Just the multi-
ple reflection representation.

One way to cbtain & multiple scattering representation of p in en inhomogeneous
medium is to express p as & Born expension in powers of n%(z) - ne(zo) . Then the

term a9, is an n-fold integral over the ocean, and therefore it is not easy to evaluate.
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Another procedure, which we shall use, is t0 obtain a representation of the form
(4.15) in which q, is only asymptotically sn n times scattered wave. Here asymptotic
refers to the limit of small wavelength X = 2w/k, i.e. to k large. To find this
representation we first apply the Hankel transform to the problem, thus converting it
to (4.10) - (4.13). Then we seek a multiple scattering representation of the solu-
tion P of this problem.

In order to construct this representation, we introduce two particular solutions
of the homogeneous form of (4.10), which we denote U(ka,z) and D(ka,z) . The solu-
tions U(kea,z) end D(ka,z) are characterized by the properties that asymptotically for
ka large, they represent upward and downward traveling waves in the neighborhood of

Zg s respectively. We normalize them so that thelr Wronskian W(U,D) has the value
4,16 Ww(Uu,D) = -2ik .

We now use U and D to construct the term qo in the Hankel transform of the
series (4.15), by solving (4.10) without regard to the boundary conditions. We
readily find

4.17 &o(ka,z) = U(ka,z,)D(ka,z )/(-2ik) .

When ao is incident upon the upper boundary z = 0 , it produces a downward traveling

wave proportional to D(ka,z), which we shall write as Rl(ka)D(ka,zo)D(ka,z)/(-Zik) .

To find R, we set Eo + RlD(ka,zo)D(ka,z)/(-Eik) = 0 at z = 0 in accordance with
(4.11), and find that R, is given by
4,18 Rl(ka) = -U(ka,0)/D(ka,0) .

Similerly, when io is incident upon the lower boundery z = -h it produces an upward
traveling wave which we shall write as Rg(ka)U(ka,zo)U(ka,z)/(-2ik) Then we set

3,3, + RU (ka,z_)d,U(ka,2)/(~21k) = 0 at z = -h to satisfy (4.12). This yields
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4,19 Re(ka,z) = -azv(ka,—h)/azu(ka,-h) .

Upon adding together the two reflected waves produced by ao we get al , which is
given by

4,20 al(ka,z) = [R ke )D(ka, z, )D(ka., z)+R (ka)U(ka, z YU(ka,z)] .

2ik
By continuing to calculate the successively scettered waves in the same way, we

find that En is given by the following formulas, from which the argument ka is omitted

h,21

(ka,z) = [Rm'RmU z (= +RT+J"R2+]'U(Z<)D(Z>)] s

9m 2ik

Gopen (kBsz) = S [RYIRED(2, )02 )#RIRD 10(z Ju(z,)]

We now sum the &n given by (4.21) to obtain plka,z), Then we apply the inverse
Hankel transform (3.17) to the sum to obtain p(r,z). Upon interchanging the order
of summation and integration, we find

o

hee plrz) = ] B 5[5 (xer) [(Rlﬂe)mU(ka,z>)D(ka,z<)
0

m~'0

m+l

™1y (ka2 )D(ka,z,) + RY

+ (R 32) Rnﬁ)(ka z,)D(ke,z )

+
+ RI;RI; lU(ka,z<)U(ka,z>)] ada .

In (4,22) R, and R, are given by (4.18) anda (k.19).

2
The result (4,22) is the multiple scattering representation of p(r,z). The
four types of terms in the integrand have the following interpretations for z > z,!
The term (RlRQ)mU(z)D(zo) represents s wave which travels upwerd from the source, is
reflected m times at each boundery, and is traveling upward at z. The term

+
(Rlﬁz)m J'U(z.O)D(z) represents & wave which travels downward from the source, is re-

flected m+l times at each boundary, and is traveling downward at 2. The other
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two terms represent waves which leave the source going in one direction and pass
through z in the opposite direction after m reflections from one boundary and m+l re-—
flections from the other boundary. Wherever we have said a wave is reflected, we in-
clude the possibility that insteasd it is turned by refraction before reaching the
boundary. This will become evident when we determine the asymptotic form of each

term in the next section.

4.5 Connections between the representations

We have obtained three representations of the solution p(r,z) of (k.1) - (L.3).
Now we shall show how they can be transformed into one another. We shall first show
how the Hankel transform representation (4,14) can be transformed into the multiple
scattering representation (4.22). To do so we note that the functions 51 and 52 in
(4.14) can be expressed as follows in terms of the functions U, D, Rl and R, vhich

oceur in (4.22):

4,23 §l(ka,z) = U(ka,z) + B, (ka)D(ka,z) ,

.2k Ez(ka,z) Di{ka,z) + Re(ka)U(ka,z) .

To verify these relations we note that both sides of each equation are solutions of
the homogeneocus form of (4.10). Furthermore from the definition (L4.,18) of R, it
follows that the right side of (4.23) satisfies (4.11), while from the definition

(4.19) of R, the right side of (4.24) satisfies (4.12). Thus 51 and 52 can be defined

2
by (4.23) ana (h.2k).

We next substitute these expressions for 51 and 52 into {L.14). In doing so we
note thet W(p,,B,) = (1-R,R,)W(U,D) = -2ik(1-R)R,) . Then (k.14) becomes
@

k.25 p(r,z) = i—lﬂ J,(kar)[U(ka, 2z, )+R, D(ka,z ) }[D(ka,z )+R,U(ke,z )]
0

(1—R1R2)'l ada .
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Upon expeanding (l—RlR2)~l by the binomial theorem, and then interchanging the order
of summation and integration, we find that (L.25) becomes examctly (4.22). Thus the
Hankel trensform representstion has been transformed into the multiple scattering
representation. Since all the steps in the transformation are reversible, the re-
versal of them yields the former representation from the latier. These transforma-
tions are indicated in Figure 4, where they are labelled "binomisl expansion".

Now we shall show how the Hankel transform representation (4.14) can be con-
verted into the normal mode representation (4.9). First by proceeding as in section

3.5 we rewrite (U4.14) in the following form, which is snalogous to (3.31):

K2 (L), .\~ ~ -1
4,26 plr,z) = y lim H (kar)pl(ka,z>)p2(ka,z<)w (ka)ada .
R ¢, +C +T
172
The contour Cl + 02 + I is shown in Figure 3. Next we dencte by & s = 0,1,2,...
the roots of the equetion W{ka} = 0 which lie in the upper half of the a-plane.
These roots are all simple and they are the only poles of the integrand of the integral
in (4.26) in the upper half-plane. Therefore a residue evaluation of that integral

yields

8

k.27 plr,2) = 2 7 5 (ke 115, (ke 2,05, (ka_,2)/W (ka,)

[

n=0

Since W(ka ) = 0, it follows that Ql(kan,z) is a multiple of p,(ka_,z) .
Therefore both ;1 and ;2 are multiples of the eigenfunction ¢n(z) , 80 we shall
e = 5 = i . In A
write pl(kan,z) ¢n(z) and pe(kan,z) an¢n(z) where o is a constent n Appendix
4.5A we show thet
Q
2
1 =
4,28 W (kan} E‘koznan [ qbn(z}dz .
-
When these results are used in (L.27) it becomes (4.9). Thus the normal mode expan-
sion is obtained from the Henkel transform representation. By reversing the steps,
the latter representation can be obtalned from the former. These transformations are

indicated by the line labelled “residues" in Figure 4. This completes the derivation
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of the relations shown in that figure.

Lh.5A Appendix

' =p.0 D - D3 D 3 inde-

We shall now evaluate W (kah) where W(ka) plazp2 pEBZpl . Bince W is inde
pendent of z, we cen evaluste it at z = O where 51 = 0 to get Wlka)= —ge(ka,o)azgl(ka,o).
We next write the homogeneous form of {L.10), which is satisfied by 52(ka,z), and
write (4.3) with & = &, which is satisfied by ¢n(z). We multiply the first equation
by ¢n(z) and the second by Ez(ka,z) and then substract the two to obtain
k.29 3 [ (2)3_b,(ka,z)-D,(ka,z)d ¢ (2)] = k%(a%-a2)F, (ke,2)6_(2)

z""n z¥2 21T R ey n’F2 *
Upon integrabing (4.29) with respect to z from z = -h t0 2z = 0, and using the boundary
conditions (4.5) and (4.12), we get

0
k.30 ~p,(ka,0)3 ¢ (0) = ¥°(a"-a’) j p,(ke,2)¢_(z)az .

-h

Now we solve for 52(ka,0) in the expression above for W(ka) and substitute the result

into (4.30). Then by rearranging factors, we get

5. 5. (ka,0) O _
k.31 _W(ke) = x{a+s )} =i j pz(ka,z)¢ {(z)az .
k(a~a ) n 33‘%(0) n

Finally we let a tend to & and the left side of {(4.31) becomes W'(ka), since
W(kan) = 0, while the right side becomes the right side of (4.28). This proves

(4.28),
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5. Asymptotic representations for an inhomogeneous stratified ocean of constant depth

5.1 Introduction

We have obtained three representations of the acoustic pressure due to & point
source in an inhomogeneous stratified ocean of constant depth. Now we shall obtain
the asymptotic forms of those representations, which are valid when the wavelength is
small compared to the other lengths of the problem. These other lengths are the range
r, the bottom depth h, the socurce depth Zs and the verticsl distence over which the
sound velocity changes appreciably. Anelytically this is equivalent to assuming that
k is large. The asymptotic forms are simpler to use, easler to celculate with, and
permit an intuitively appealing interpretstion of the results.

The asymptotic forms of the modal and Hankel transform representations involve
the WKB esymptotic forms of the solutions of certain ordinary differential equations.
The asymptotic form of the multiple scattering representation involves the stationary
phase evaluastion of certain integrals. The result has a direct interpretation in
terms of the rays of geometrical acoustics. After deriving these asymptotic forms,
we shall show the connections between them.

In section 6 we give a direct geometrical derivation of the asymptotic represen-
tation by means of rays. This ray representation willl be shown to be the same as the
asymptotic form of the multiple scattering representation, which thus provides a
Justification of it. The main virtue of the ray method of derivation is that it also
applies to nonstratified inhomogenecus oceans of variable depth.

As we ghall see, the asymptotic results depend upon the form of the function n(z)
and the source depth z, . We shall assume that n{z) has the form shown in Figure 5,

and that the source is located in the sound chamnel, as is indicated in the figure.

5.2 Asymptotic form of the modal representation

The representation of p(r,z) in terms of normsl modes is given by (L.9) which is

Y 0
5.1 pl{r,z) = %’mZO ¢m(z)¢m(zo)Hél)(kamr) J ¢i(s)ds .
-h
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n{0}

Clz}

z=-h

OCEAN BOTTOM

Figure 5. The gualitative form of the refractive index profile n{z) asssumed in section

5. The source is supposed to lie within the sound channel.
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The eigenvalues a, and eigenfunctions ¢m(z) are solutions of (4.3) and (4.5).
Thelr asymptotic forms for k large are determined in Appendix 5.2A by the WKB method.
There are three different asymptotic forms, each applicable to one of the intervals
[o,n{-n)}, (n{-n),n(0}))}, (n(O),nmax):f within which the real eigenvalues lie. Here
n_o. = max n{z)} . The values of the integer m for which each form applies are those
for which the corresponding eigenvalue lies in the appropriate interval.

The three asymptotic forms are listed below, together with the eigenvalue equa-

tion and the values of the normalization integrals obtained by using them:

0<a < n{-h)

Z
5.2 8.(2) ~ (n%-a2)"2/* cos [k ! {nz—ai)l/ed_z’] , -h<z<0,
-h
0
5.3 k J (n2- 1i)]’/gdz = (m + %—)'n R
-h
0 0
5. [ 2wz~ 3 [ (a2ed) o
-h -h

n{-h} < a < n{0)

z
5.5 ¢m(z) ~ (na-ai)"l/u cos[k J {n‘?-ai)l/edz’ - w] » 7 <220,
2z
™
~0 y ~h £z < 2, s
0
5.6 k I (ne-&i)l/zdz = (m + I?')TT ’

Z
m
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5.7

Here z_ is the root of n(z_ ) = & .
n m

n(0) < &, <n

max
)y z
2 2.-1/ 2 2\1/2 il
5.8 ¢m(z) ~ (n -a, ccs{% J (a°- m) / az' - |, z g <z<zl
z
m
~ 0 s -h <z <z
m
~ e s zp<z<0
Z'
2 2.1/2 1
5.9 k j (n-m dz=(m+.2_)-n- .
z
m
¥
8] zm
2, .1 2 2,-1/2
5.10 f 9,4z ~ 3 f (n%-a ) dz .
-h Zy

Here z is the smaller and z) the larger root of n{z) = a . The above formulas
are not valid at the turning points z, and z& . In addition, we shell use the

following asymptotic form of the Hankel function:

i (xe,_r=7/})
5.11 B (ke r) ~ (2/mie r)/2 e ™

We now substitubte the sbove formulas into (5.1). The result can be written

in the following form:
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1

5.12 plr,z} ~

Z
ike, r+im /b 2 °

e cos[k [ (n2—a§)l/2dz—1r/h]cos[k [ (nz—ai)lmdz-'n/h]
z 2

% iy m

a.m>n(-h)

z'
3¢e3
[nz(Z)-ai]l/h[nz(503—33131/ b f le,/ (nz-ai 31/2dz

Z
m

< <zt
Zm Z,Zo 'm

z
ika r+iT/h z 0
e ® cos[k J (n2~a§)1/2dz]cos[k f (n2-e.i)l/2dz]

1 h <h

A S
(emer)t/2 am<'§1(-h)

{4
{na{z}-ai}lf l‘[ng(z o)u&i]l‘m I {am/ (ng—ai)]l/adz
-h

Here we define zI‘n = 0 + when there 1s only one root of n{z) = a This result {(5.12)
is the asymptotic form of the normal mode representation of p{r,z). Only a finite
number of modes are propageting, and for kr large they are the only ones that need be
taken into account in evaluating the sum.

The result (5.12) is not valid when either z or z is equal to either 2, or z!

m £

because the asymptotic forms of the ¢m(z) given above are not valid then. This de-
fect can be overcome by using other asymptotic forms of cbm(z) in thin boundsry layers
saround the turning points. These boundary layer asymptotic forms, which involve Airy
functions, are used to derive the WKB connection formulas employed in Appendix 5.24
in getting the sbove asymptotic forms of ¢m(z) . A different method of overcoming
the defects, which we shall use instead, is to represent tbm(z) by & uniform asymptotic
form valid both at and near a turning point as well as away from it, Such a uniform
asymptotic form is derived in Appendix 5.3B, and alsc involves Airy functions. When
there are two turning points, this asymptotic form is only seml-uniform, since two
different forms are valid around the two turning points.

The uniform or semi-uniform asymptotic forms of ¢m(z) just described, together

with the corresponding equations for the eigenvalues a.m , are:
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0<a < n(0)

5.13 ¢ (2) ~ (8, ()12 | aa[-1?/3(2) 101" (6?35 () 120 35(2) /1 [-x2/ I5(-n)]

5.14  ail-k?/35(0) 181 [-x2/35(-n)] - Bal-k?/35(0) a1 [-k®/35(-n)1 = 0 .

Here 5(z) is defined by

njw

2 2/3
5.15 s(z) = [ f [na(z')-ai]l/zdz' .
2z
m

In the interval 0 < & < n(-h), (5.13) and (5.1%) are asymptotically equivalent to
the simpler WKB formulas (5.2) and (5.3), but the latter are not uniformiy valid for

8, close to n{-h) . When -k_2/3S(-h) >> 1, (5.13) and (5.14) simplify to
5.16 ¢ () ~ [Sz(z)]-l/2 ml-x?3s(2)7 ,
5.17 M-x*"3s(0)1 = 0 .

In the interval 0 < a < n(<h) , the turning point z lies to the left of -h (i.e.

z, < -h) , and is obtained by continuing n(z) into the interval z < -h .

< <
n(0) <a <n. .
For -h < z < z! , (5.13) holds with & determined by (5.21). For

z, <220, ¢m(z) is given by
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5.18 ¢,(z) ~ e [-5 ()17 2| asl-x®/ 3B(2) 1-a1[-x?/ 35(0) Io1 [-1®/ 35(2) /B2 [-®/ %5(0))

Here 5(z) and ¢, are defined by

1
z) 2/3

5.19 8(z) = % j [ng(z‘)-am]lfzdz’ s
2

o 2, v 2172, N ai[-x2/35(0)] 2 2.1/2 _l
5.20 c =|sinlk im (2 )—am] dz'} - ;;E:;§7§§?E;a coslk [n (zv)_am] dz!
‘m

The equation for e is

5.1 cot{ T?n (27)-e2 21/24 } B[ -2/ 35(0) a1 -k 35(-n) J-a1[ %%/ 35(0) 131 ' [-k%/ 35(-n) )

) a1[-x%/35(0) 1" (% 35(-n) 1-B1Lx%/ 35(0) Im1 " [ 3s(=n) ]

h1:3
When -k—2/3§(0) >> 1 and -k—2/3s(—h) >> 1, thenc -~ («1)™ , (5.21) reduces to
(5.9), and
5.22. tp(z) ~ (-1 [5, (20172 asl?/ 3821

The two asymptotic forms (5.13) and (5.18) are asymptotically equal in the inverval

< < ot . .
z, -4 Zp where they are both velid, Neither 1s velid for am near n . .» when

the two turning points are close together.
To obtaln the semi-uniform asymptotic form of the modal representation of
p(r,z) , we use (5.13) and (5.18) for ¢m in (5.1), together with (5.11) for Hgl) .

When both z end z are below the height z &t vhich n(z) attains its maximum, ¢, 1is
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~2/3

s(-h) >> 1, and -k'2/3§Y

given by (5.13). If in addition -k 0) >> 1, then (5.1)

becomes

1
(8mkr)

5.23 P(rgz) ~ 1/2
g STl [e8,(2)8, (2 )T 21 (6?35 () It L6 35 (2 )3

m zmax 0
I [SZ(z)]—lAiQE—k2/3S(z)]dz- J [5;(2)]_1A12[—k2/3§(z)]dz

-h z
max

Similar but more complicated formulas hold for other ranges of z and z, s and these
formulas cover all values of z and z, -+ However the fact that p is given by several
different formulas meeans that none of them is uniform. Furthermore the eigenvalues
and eigenfunctions mey be inaccurate for the smallest values of m , when the two
turning points are close together.

To obtain a completely uniform asymptotic form for p we must obtain a completely
uniform asymptotic form for ¢m(z) . At the same time this will improve the accuracy
of the lowest eigenfunctions. An alternative method for improving the accuracy of
these eigenfunctions is to introduce a different representation for ¢m , involving
Weber or parabolic cylinder functions, in a boundary layer around the two nearby
turning points. But since a completely uniform form for ¢m can be constructed with
parabolic cylinder functions, we shall construct it instead.

The uniform asymptotic form of ¢m(z) Just referred to is derived in Appendix

5.2C. It is

s.2h ¢ (=)~ [5 ()7 2lul-x/2, (200 %5 ()]

—ul-k/2, (26) Y 25(0) WI-k/2, (21 P5(2) 1Tk /2, (26) Y 25011 |

Here U and V are parabolic cylinder functions, defined in Abramowitz and Stegun [%]

page 68T, while S(z) is defined by



z
5.25 %’[luszjl/z + %-sin-ls + §-= j [ng(z')—ai]l/adz' .

z
m
The eigenvalue e, is the m~-th root of the eguation

5.26 v [-k/2, (26)Y 25 (-n) WI-x/2, (26)25(0)]

y/25(m)l = 0 .

~ul-k/2, (26)25(0) ' [-k/2, (20
In (5.26) S is defined by (5.25) with a replaced by & and z replaced by z(a) , the

root of the equation n{z) = a .

(1)

By using (5.24) for ¢m(z) in {5.1), together with (5.11) for HO

, we obtain a
uniform asymptotic form of the modal representation of pl(r,z) . From it p can be cal-
culated for all values of 2z and z, . Furthermore by expanding the parebolie cylinder
functions in it asymptoticslly, we can recover from this the other asymptotic forms

of the modal representation given in this sub-section.

5.2A Appendix
We shall now obtain an asymptotic form of the eigenfunctions ¢mLz), valid for k

large, by the WKB method. To do so we shall first find the asymptotic forms of the
upgoing and downgoing waves U and D , defined in sub-section 4.4, because we shall
need them later. Then we shall use these forms to find ¢m(z) asymptotically. The

differential equation satisfied by U, D and ¢m is (4.3}, which is
5.27 9,, + K0xP(2)-e"1p = 0 .

We seek & solution ¢ which, for k large, is asymptotically of the form
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5.28 ¢(z) ~ (18(2) T x)™a, () .
3=0 3

Substituting (5.28) into (5.27) and equating the coefficient of each power of K1 to

zero yields
5.29 82 = n(2) - 8%,

5.30 ZSZ(AJ)Z +8,,4, = -{a

J J*l)zz s J=0,1,0°; A Z0.

~1

The solutions of (5.29) which vanish at z, are

z
5.31 s(z) =+ J n2-a2)Y 24,
ZO

The general solution of (5.30) is, with bJ an arbitrary constant,

z

5.32 A, (2) = [¥(a)=a"TH/ {PJ -1 [n2<z')~a2]‘1/”[AJ_l(zv)]z,z.az-}

2
fo]

Upon using (5.32) and (5.31) with either sign in (5.28), we obtain the asymp-
totic expansions of two solutions of (5.27). These expansions are valid provided
n2(z) - &2 does not venish. This is the case if 0 < & < n(~h) . The two solutions

are Just U(ka,z) and D(ka,z) . If we set b =1, their leading terms are
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ik nz—az)lledz'

5.33 U(ka,z) ~ [n2(z)-a2TL/% ¢ , -h<z<0,
Z
-ik (n2-a2)1/2
-1/4 24
e

dz'

5.34 D{ka,z) ~ [nz(Z)—ae]

Then by using (5.33) and (5.34) in (4.18) and (L.19) we get

0

21k f (n2-a?)1/2g,

Zs

5.35 Rl(ka) ~ - s

Z
0

2ik J nz—ae)l/zdz
h

5.36 Re(k&) ~e

To get ¢m we form a linear combination of U and D which asymptotically satisfies

the boundary condition ¢Z(—h) =0 . This can be written as

z
5.37 ¢m(Z) ~ [ng(z)—&ﬁj_l/h cos &:J (ng—ai)l/adz']
~h

Here we have set & = a_, vhere a is determined by the condition ¢(0) = 0 . This

condition yields the eigenvalue equation

o]
5.38 k [ (nz—ai)dz = (m + %&n , m= 0,1,2,°°* .
-h
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Let us now consider & in the interval n(-h) < a < n(0) , in which case there
is exactly one turning point z(a) which satisfies n[z{a)] = a . Then U and D are of
the form (5.33) and (5.3Lk) in the interval z(a) < z £ 0 , and it is convenient to re-
place the lower limit of integration z, by z{a) in those equations. TFor z < z(a} ,
U and D are linear combinations of the two solutions corresponding to the two signs
in {5.31). To find the sppropriate linear combination we use the WKB connection

formulas, which is {Morse and Feshbach [5] Vol. II, page 1097T)

z z
5.39 (n2—32 'l/h[% cos{k f (ne—a2 l/edz - §§~w} + B cos‘k f (n ae)l/Q dz - 3%%}} ,z>z{a)
z{a) z{a)

z(a)
. J (82-n2 1/2
2,-1/4 —1ﬂ/h z

—_— e l/2(a -n“)

(B-A)e

z(a)
—kJ (a2 n° 1/2 dz
z

+ (A ei."/6+B e—i’ﬂ—/6)e ,  2<z(a).

This relation holds when n? - a2 >0 for z > z(a) and n2 - a2 <0 for z < z{a) , as

in the present cese. Here A and B are arbitrary constants.
We now use (5.33) and (5.34) for U and D in the interval z > z{a) , with z, re-
placed by z{a) . Then we use (5.39) to find them for z < z{a). In this way we

obtain

{n2_a2)ll2dz

ik
5.50 U ~ (n-a?)" 4 o z(a) , z{a) <z<0,
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z{a)
k a2 nz)l/edz
- -i(a2~n2)-l/h e ° » -h <z <az(a),
z
ik (n2—32)1/2dz
5.41 D~ (n2_a2)—l/h e z(a) N z(a,) < g io N
z(a) Z(&)
k (a2—n2 l/2dz -k J (ag-ng)dz
~ (az-ng)-l/h e * -ie 2 , ~h <z < z(a).
Then (4.18) and (%.19) yield
0
2ik J (n%-a2)Y/ 24,
z(a)
5.42 Rl —t ,
z(a)
-2k a2 ne)l/edz
5.43 Re . e-in/e +e -1 - e—i‘lT/E

By forming e linesr combination of U and D to satisfy ¢z<"h) = 0 asymptotically,

gsetting a = a and z(am) =z, ve get

2z
5.44 ¢ (2) ~ n?-a2)-3/4 cos{k [ (nz—a.i)l/zdz - -LL] » 2, <220

Z
m
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Z
x| " 2y1/2
- (ai_nz -1/k e

(as-n

The condition ¢m(0) = 0 leads to the eigenvalue

0
5.%5

2,
m

Next we shall consider & in the interval nf

turning points z(a) and z'(a) satisfying n{z(a)]

dz - im/L

equation

2 2
K [ n -ai)l/ az=(m+ 1, m=0,1,2," .

0) <ac< n .. - Then there are
2

= n{z'(a)] =a , with n a

for z{a) < z < z'(a) . Again U end D are of the form (5.33) and (5.34) with z,

placed by z(a) in the interval z{a) < z < z'(a)

the connection formula (5.29)., To find them for

connection formula by replacing z(a) by 2'(s) and then interchenging z'(a) with

because n2 - a2 >0 for z < z'(a) . Then we use
we obtain
z'(a)
1k (n2-a2)1/244
5.46 U.e 28 (a2-n?)~L/Y

xle %'(&)
z
ik (nz-az)l/adz
. (ne_az)-l/he z{a)

. To find them for z < z{a) we
z > 2'(a) we must first modify

the modified formula., In this

X (&2—n2 l!2dz

z'{a}

z'{a) <z <0,

, z{a) < 2z < z'(a) ,

2

two

>0
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z'(a)
~ik (n2 az)l/zdz + k (aE_nz)l/de
547 D ~ —1(a2n?) LY o z{a) #!(e) .
z'(a) <2 <0,
Z
-ik ; (n2—a2)1/2dz
~ (nz—a.a)-l/“L e z(a) s z(a) <z < z'(a) ,
z(a) z{a)
X (a2-n2)l/2dz x ( (a2-n2)1/2dz
~ (a.z—nz)'l/h e Z ~ie 2
-h <z < z{a).
Now (4.18) and (L4.19) yield
z'(a)
21k (n2-a2)1/24, -2k J (a2-n2) 24,
5.48 R ~e z(a) e-i‘"/2 e z'(a)
z'(a)
—im/2 + 2ik (n2-a?)1/24,
. e z(a)
z(a)
-2k (a2-n2)1/2dz
5.49 R iv2 -h oim/2
. o~ .
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To get ¢m(z) we again form a linear combinetion of U and D to satisfy ¢z(—h) = 0
and ${0) = O asymptotically. Then writing e instead of a , z{am} =z and

z& = z'(am) we get the following result for ¢m and the eigenvaelue equation:

\]

Z z
m
ik f n2-02) % x| (aPen?)M2an - s
Z
m

z!

5.50 ¢m(z) ~ —i{ag-n2 -l/h m s

z! <z 20,

4
~ (nz-a.i)-l/h cos [k J n2-a§)l/2dz - %} s By <z < z’m,

Zz
m
'kf
- (ai-ne)-l/h e z

m
Z‘
m
X j n2~&i}l/2dz = (m -+ %ﬁﬂ R m = 0’1’2,10- .
Zy
Finally we treat a > n , in which case there are no turning points and no

max

eigenvelues or eigenfunctions. Then (5.33) - (5.36) are valid, but U and D are

exponential and not oscillatory.

5.2B Appendix

The asymptotic form (5.44) of the eigenfunction ¢ , which holds when there is
one turning point z{a) , is not uniform. It consists of two different formuias,
neither of which is valid at the turning point. To obtain a uniformly valid asymp-

totic expansion of ¢m we seek ¢ in the form
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<«

L

5.52  ¢(2) ~ Wl-k2/38(z)1 § 2B, (2) + 3 1?35 (2)]
3=0

K¢, (z) .
3=0 !

Here 3, B‘j and C'j are to be determined, while W(t) is a solution of the Airy equation

5.53 W' (t) - tW =0 .

The form (5.52) is a special case of that given by Lynn and Keller [6] and is
esentially due to Langer [7] .
We now substitute (5.52) into the equation (5.27) satisfied by ¢ , and equate

to zero the coefficient of each power of k¥ . The first two powers yield
2

5.5k SSz -n" +a =0,

5.55 QSZ(BO)z +BS8 =0.

The real solution of (5.54) which vanishes at z{a) is given by (5.15) with z(a) re-
placed by LI Then the solution of (5.55) is, spart from an arbitrary constant

factor,
5.56 B (2) = [ ()12 .

For W we write a linear combination of the Airy function Ai and Bi , and then

the leading term in (5.52) becomes
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5.57 8(z) ~ [8 ()12 {Ai[-k2f3s<z)3 + o 51lx*/35(2)] } .

When the constant ¢ is chosen to make ¢z(-h) ~ 0, (5.57) becomes (5.13). Then the

condition ¢(0) ~ O yields the eigenvalue eguation (5.14).

5.2C Appendix

When there are two turning points, the asymptotic form of ¢m is given by (5.13)
and (5.18) for different ranges of z . We can obtain a uniform expansion of ¢ in

this case by seeking ¢ in the form

§ k¢, (2) .

5.5 o(z) ~ W[(20%8(z)] § 7B, (2) + kY Fr [(2) Y %5202
=0 3 j=0 3

Again S, Bj and Cj are to be found while W(t) is a solution of the parabolic cylinder

equation

5.59 W'(6) + (2e—t2)W(t) = 0 .

Upon substituting (5.58) into (5.27), and equating coefficients of the two

highest powers of k , we get
5.60 si(sz-l) +n®-2a%=0,

5.61 ZSZ(B )+ BS,, =0 -
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The solution of (5.60) is given by (5.25) in which z(a) is replaced by z s end the

solution of (5.61) is, apart from a constant factor,
5.62 B (2) = [8,(2)77V/2

The solution W of (5.59) can be written in terms of the functions U and V defined in

Abramowitz and Stegun [47 page 687, and then the leading term in (5.58) becomes
5.63  #(z) ~ Esz<z>3'1/2{zﬂ;k/z,<2k>1/zs<z>3 +e V[-k/2,(2k)l/28(z)]} :
The constant ¢ must be chosen to make $(0) ~ O , and then (5.63) becomes (5.2h),

Then the condition ¢z(»h) = 0 yields the eigenvalue equation (5.26).

5.3 Asymptotic form of the Hankel transform representation

We shall now obtain the asymptotic form of the Hankel transform representation
(4.14) of p(r,z) . To do so we shall just replace the functions in the integrand of
(4.14) by their WKB asymptotic forms, which can be obteined from the results of Appen-
dix 5.2A. In sub-section 5.5 we shall convert this asymptotic form into a series of
integrals, which is the same as the asymptotic form of the multiple scattering repre-
gentation to be obtained in sub-section 5.4. In sub-section 5.4.1 we shall evaluate
these integrals asymptotically by the method of stationary phase. The resulting
series is the same as that which will be obtained by the ray method in section 6.

The functions 51 and 52 , which occur in (L.1h), are given by (4.23) and

(4.2L4) in terms of U, D, R, and R The latter functions are given asymptotically,

5 -
in Appendix 5.2A, by different formulas in four different ranges of a . Therefore
we must divide the range of integration over a in (l4.1L) into these four ranges, and

use the appropriate asymptotic forms in each range. Thus let Il be the interval
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the intervael n(0) < a <n

< - i -
0 < a < n{-n), I, the interval n{~h} < a < n{0}, I, ax

and I, the interval a > . Then we can write (h.1h4) in the form

: (1)
5.64 plr.z) = § p'(r,2)
i=1
where
2 ; (ka,z ); (ke,z_)
5.65 P(i)(r,z) =% I 3, (ker) L W?ka? “ ada .
I,
1

In (5.65) we use for J, its asymptotic form

5.66 J_(kar) ~ (ewkar)el/Z(eikar-iﬁ/h+e-ikar+iﬂ/h} )

We also use (4.23) and (4.2L4) for p, and D, with U, D, R, and R, given by those
formulas in Appendix 5.2A which are valid in Ii . In this way we obtain the following

four results:

1/2 n{-h)

Q
sin[k J‘ (nz—ag)l/edz}
Z
5.67 P{l}(‘—”,z)'v k cos(kar-g-) >

ordr [0 (2)-a2 1 02 (2 )-a2 1"

Ze
cos [k j n?a? }l/edz]

M -h a}./ 2

0
cos[k [ n2~a2)l/2dz

~h

da , -h<z<O0.
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0

2(0) sin[% j ng-az)lfedz]
5.68 %) (x,2) ~ o e cos(xar - 1) — ZZ 1k 2 21/h
21 alen) (a%(z)-a"1"" "[n"(z)-a"]
%
coslk f (n2~a2)l/2dz - g
z{a)} /2
X 5 al/as , z{a)<z 20
cos{k [ (ne-ag)l/gdz - E
z(a)
~0 3 ‘hSZ<Z(a)
5.69 p3(r,2) ~ 0 , w'(a) <zz0,
z'(a)
n cos (ker - %Jcos[% J (n2 ae)l/gdz E]
X 1/2 fmex 2,
- 3
o1r 2(0) [ne(z}_az}l/h[nz(zo)_aellll;
Z¢
cos[% f (ne—a.2 l/2dz - %
x Z(z{(a) al/zda , z(a) < z<3z%a),
cos[% f n2 a2 l/zdz}
z{a)
~ 0 » =h <z < za) .
5.70 p““)(r,z) ~ 0 » -h £2<0.

Finally the asymptotic form of p is given by (5.64) with the p(i) given by
(5.67)=(5.70). From {5.70) we see that p(h) is exponentially small, so it can be
omitted from the sum for p, which then consists of just three integrals.

In sub-section 5.5 we shall show how this result can be converted into the asymp-
totic forms of the normal mode snd the multiple scattering representations, and also

how it can be obtained from them.
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5.4 Asymptotic form of the multiple scattering representation

The multiple scattering representetion (%.22) of p{r,z) can be expanded asymp-
totically by using (5.66) for J (kar) end the formulas for U, D, R, sud R, given in
Appendix 5,24. There are four sets of these formulas corresponding to four different
intervals of the parameter a. Therefore we must first split each integral in (%.22)
into a sum of four integrals over these four intervals, and then use the appropriate
asymptotic forms from Appendix 5.2A in each integral. After proceeding in this way,

Wwe can write the asymptotic form of (4.22) in the form

+
g p;4(r,2)

The function p:J in (5.71) is defined by

12 iiﬂ!h+ik$§j(r,z,a;m)
5.72  p} (r,2) -|—% (-1)"a, £ al2aa s
H 2| ko im } (02(2)-a? T P2 (a )27
i

i=1,2,3, z in Ri s

+
pia(r,z) ~ 0, znotinB

*
phd(r,z) ~-0,=-h<z<0.

The coefficient ai , the range Ri and the interval Ii are given in the following

Jm
table:
5.73 1 aijm Ri Ii
1 (3t [-n, o] {0, n(-n)]
2 (-eiﬂ/z)j‘l e“mm/2 (z{a), 0] [a(-n), n(0)]

3 (D3 rer 5= 1,2 e P tor y 23k (2(a), 2'(s)) [n(0), n ]
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+
The function S; in (5.72) is defined as follows:

3

0

2

>

5.74 sid = tar + {(-—1)3‘l I + 2(m+3-1) f }(ne-ae l/eaz , §=1,2 .
z -h

<

z
>
v
For j =3 or 4 , 8, is given by (5.74) with } replaced by J-2 and ] replaced by
2z

1J
0 0
+ + .<
+ . 823 is obtained from Slj by replacing the lower limit of integration
Zy z
-
-h by z(a) . SEJ is obtained from Sij by replacing the limits of integration -h and

0 by z(a) and 2'(a) respectively.

Thus the asymptotic form of the multiple scattering representation of p(r,z) is

given by (5.71) with the pf given by (5.72). Each term in this sum for p has an in-

J
terpretation as a multiply scattered wave, just like the terms in (4.22). 1In the
next sub-section we shall simplify (5.72) further by evaluating all the integrals
asymptotically for k large, using the method of stationary phase. The result has an
interpretation in terms of rays. It will be rederived directly by the ray method in
section 6.

In sub-section 5.5 we shall show how (5.71) can be obtained from (5.64), the

asymptotic form of the Hankel transform representation, and also how (5.71) can be

summed to yield (5.64).

5.4.1 Explicit asymptotic form of the multiple scattering representation

Now we shall evaluate the integrals in (5.71) asymptotically for k large. This
will yield a simpler asymptotic form of p(r,z). To evaluate them we shall use the

method of stationary phase, which is explained, for example, in Erdelyi [e1.

+ -
First we note from (5.72) that pﬂj ~ 0 . Next we find that the phase function siJ

has no stationary points, so pgj ~ 0 . Therefore (5.71) can be written as

3 )

5.75 plryz) ~ 3 ¥ p' .
i=1 3=1 i}
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4
Now we shall evaluste the integral (5.72) for p;j by stationary phase.
From (5.74) we find that the stationary points of the phase function S;j ,
J = 1,2 satisfy the equation
Z 3]

>
5.76 r = a{(-l}J‘l f + 2{m+3-1) f ] {ng-ae)“l/edz . 3 = 1,2y m = 0,1,2,%% .

Z, ~h

+
Iet a = b be the root of {5.76) for m = 0,1,2,*** . The second derivative of 813

with respect to & , evaluated at a = bm,occurs in the stationary phase result. Fronm

(5.74) ve obtain for it

3%st Zs 0
5.77 213 = - {(-1)9? f + 2(mt+y-1) [ nz(n2~bi)'3/2dz . d=12.
da -
%c
The stationary points of all the other SI& satisfy the equations obtained from (5.76)

by the replacements described after (5.7h). Also BQSIJ/BaE, J = 3,4, is given by
(5.77) with the same replacements. However the second derivatives of the other S;J
cannoct be obtained from (5.77) because for them one or more of the limits of inte-
gration are zeros of n2-a2 , and that would lead to singular integrals.

+
To celculate the second derivative of 823, ) = 1,2 we first replace -h by z(a)

in (5.74} and then differentiate once to obtain

BS+ Z, 0
5.78 5;%1 = I‘—-a{(—l)j-l f + 2(m+j-1) f }(nQ_ae)-l/adz , 3 =1,2.

z z(a)

We now 8dd to and subtract from the integrand the quantity n2(n2—a2)—1/2/a . In

the subtracted term we write n2 as (n/n') nn' and integrate by parts to obtain



70

35, o(z,) /2 o(s) 1/2
5.79 ot = r+(-1)3'1{ P - T2 (e )-e?) ]
>

da

0

p(0) 1/2 2>
-2(my-1) —— [a%(0)-e®1 ~ + & [(-1)3'1f va(mry-1) | ](l+p')(n2-a2)
z< Z(&)
J = 1,2
Here
5.80 oplz) = n{z)/n'{z) .
Differentiating {(5.79) and setting a = bm vields
2.+ 2 2
3°s olz_)n“(z ) p{z n"(z_)
5.81 22=("1J[2<2 <272+2>2 >21/2]
da bm[n (z<)-bm] bm[n (z>)—bm]
2 2, 0 2
: (1+p')n
+ 2(m+3=1) (0)n"(0) + -L[ (-1)J +(2m+,j-1)f I dz ,
p2[?(0)-b211/2 2 I !y ] 22
m m m z, z bm) m
§=1,2
8ingilgrly we find
2.+ 2
5‘82 ) 523 _ p(zo)n (ZO) _ p(z}ne(z)
% ol (2)0202  v2nP(a) 022

0 0 0
2 2
p( (1+p')n
+ (2m+2) 5 2O)n ((2)) - —12 ' + + 2n l N az .
v2[n (O)-bm]l/ ve J [ me) (n°-b

o] 2 m

1/2
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2+ 2
PO O L% €3 WP (5l ()
362 biﬁne(zo)‘szllz b2[0(z) b2/ 2 202 (0)-2 12

m m m m n

0 0
j;.{" I - f + (om+2) T l__iiiﬂllai
z

2 2 .2\1/2
b Z Z(bm) (n '—hm)

m 0

We also find that 3QS;J/3a2 is given by the same expression as ags;j/aaz with p(0)

replaced by 0 and with the upper 1limit O replaced by z‘(bm) .

With these preliminary calculations completed, we can apply the stationary phase

formula to sz given by (5.72). The result is

-1/2
2.+
o 1/2 378,
5.84  ply(r,z) ~ g 1 (-1 B _ra—fl
8.

n=0

-1/h “Mh s,
[nz(zo)—bi] [ne(z)—bi] e i .

i=1,2,3; z in Ri .

z not in Ri

By using (5.8%) in (5.75) we obtain the desired explicit asymptotic form of the

multiple scattering represemtation of p(r,z) .

5.5 Connections between the asymptotic forms of the representations

We have now obtained asymptotic forms of the modsl, Hankel transform and multi-

ple scettering representations of p , as well as & simpler asymptotic form of the
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latter. These four asymptotic forms are indicated in Figure 4. We shsll now show
how these different asymptotic forms can be transformed into one another. The trans-
formations are also indicated in the figure.

Let us begin with (5.64), the asymptotic form of the Hankel transform represen—
tation, which expresses p as & sum of the four p(i} . Eeach of the p(i) conteins a

cosine faetor in the denominator of the integrand. We first rewrite these factors

by using the following expansion, which is obtained by using the binomial theorem:

1 2 _ § (-1yde(23#1)x

cos X e-lx(l+e21x) 3=0

We also write the trigonometric functions in the numerstors of the integrands in
terms of exponentials. In this way (5.64) becomes transformed exactly into (5.71),
the asymptotic form of the multiple scattering representation. By reversing these
steps, we can transform the asymptotic form {5.71) of the multiple scattering repre-
sentation into the asympbotic form (5.6L4) of the Hankel transform representation.
These transformations are indicated by the line labeled "binomial expansion" in
figure L.

We shall now show how the asymptotic Hankel transform representation (5.6h4),
with the p(i) given by (5.67)-(5.70) can be converted into the asymptotic normal mode

representation (5.12). First, as we have shown in sub-sections 3.5 and L.5, we can

write the asymptotic Hankel transform representation in the form

L 1372

~1/2
—2—:&' r

1im ei(kar-ﬁ/h)

Ryoo

Cl+32+%

5.85  plr,z) ~

)1/2

~ ~ -1
. pl(ka,z>)p2(ka,z<)w (ka ade .

The contour C; + C, + [zis shown in Figure 3. The functions ﬁl, ﬁe and W(ka) are
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given in sub=-section 5.3 by different representations for different renges of the
real part of a.

Let & = , m=0,1,2,°*, be the roots of the equation W(ka) = O which lie in
the upper half of the a-plane. Those real roots which lie between (0,n(-h)),
(n(~n), n(0)) and (n{0), nmax) are the zercs of the Wronskian W(ka) of N 52 given
by (k.23), (L4.24) with U, D, R,, and B, given by those formulas in Appendix 5.2A which
respectively. They are exactly the values given by (5.37,

are valid in Il’ I, and I

2 3

(5.6) ana (5.9).

We now compute the integral in (5.85) by the method of residues and obtain

2mr

1/2 i(ka r+m/h) B, (ka 2,08, (ke ,z.)
5.86  plr,z) ~ [.2&_} ) a;/2e m 1 mw': 2) w i<
kam

We next replace §l, 52 and W' by the representation appropriate to each value of B¢
Then we find that {5.86) simplifies to the asymptotic normel mode representation
(5.12). By reversing the steps we can obtein the asymptotic Hankel transform repre-
sentation from the asymptotic normal mode representation. These transformations are
indicated by the line labele "residues" in Figure 4.

Next we shall show how to convert the simpler asymptotic form of the multiple
Scattering vepresentation {5.75) into the asymptotic normal mode representation

(5.12) [9]. First we use (5.73), (5.74) and (5.77) in (5.84) for i = § = 1 to obtain

/2
+ § b
By ~m=0 T z, o
ik {bm? * { f + 2m f} (n2-02)M 2, —imw]
z, -h
. e
z ) 77 -
[ne(z)-bi;]l/u[ne(zo)—bi;jl/h [r [ f + op f ]nz(ne(ng—bi)'3/2dz]
z =

<
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Here we have used (~1)" = ™™ | e now sum this series by Poisson's formula (3.3h4)

to get
+ 1 bt
5.87 1y ~ 5
11 8“2 gmn
z, o]
. 2 3 .
1k[acr+[J +% !](n -ag l/gdz}-% - iqf
® &l/ae Z, -h
* 2 ac .
/b 2 can| [P _;_0 2, 2 2,-3/2 HE
0+ 2 2-1 -
[n (z)—ac] [n (zo)—aC] r[ [ + 2 f n(n -aC)
Z, ~h
Here we have used the notation a, =% b . The stationary points of (5.87) are

C Upy B

given by the zeros of %% = 0 where ¢ is the coefficient of ik in the exponent and it is

Z o} a
§.§’_ = E .—r;__—..-. = i =
Since e =% - [ J + 2 ( l( RNV dz = 0 due to the equation {5.76) for J = 1,
z h

[4 -8
< [
. s : aed _ 3¢ _ . :
the stationary points are given by EZ i T 0. This gives
4
0
1 2 _2y1/2 1 a_
5.88 = j{n -ag) dz - 5= - 3 0.
-h

Since the solutions e, depend upon g, this is the eigenvalue relation (5.3} if we

by a_. We now compute a2 and find
q a?

designate aC
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2 0 8 da

5’89 _d__@__:_}_ ——;-—-—-dz &

ar? T 2 2,1/2 4z
4 - (n -ac)

da

In order to find T we differentiate the relation given by g§~ =0 with
o
respect to I and obtain
Q Z 0
da >
L. _1 2_2,-1/2 f 4 f 2, 2 2y-3/2
i - e (n ac) dz - n“(n a;) dz .
-h Z, ~h

By using this equation in (5.89), we get

0 2
j a (nz—-a.2 -l/zdz
d2¢ [ 4
5.90 “‘2’“"1“2 ~h dz .
a I %1 2,2 owe
J + & I n“{n"-ay) dz
™
3 -h

<

By using (5.87) and (5.90), we find that the stationary point contribution in (5.87)

yields

)1/2

Z

>
ik[aqr + f (neuaz dz] + iﬂ/h

Zz

<

5.91 le ~ (3emr)1/2 € 0 ‘
b [na(z)—az]l/h[nz(zo)-&ijl/h [ [aq/(ne—ai)ll/de

“h

Similerly we can show that

Z

>
ik[aqr - J (nz—ai)l/edz] > i“/h
2s

l/2ze

5.92 p12~ (32mkr ) L 5 ,
[n%()-a27 4 12022 [ o /(2 a2 T2

-h
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0 0
ik 8" +l J + [](nQ—aQ)l/zdz + in/h
z, 2
5.93 pI3 - = (3omer) 12 7 & 5 .
¢ {na(z)-ai]l/h[n2(z0)-a§]l/h f[aq,/(nz-ai)]l/zdz
=h

](ne—ai)l/edz] + iﬂ/h

ZO z

ik[a r + f + J
q

h h

5.94 By} ~ (3emer)~2/2 g - 5 '
[ne(z)—ae]l/h[ng(zo)—ae]l/h J [aqﬂ/(ne-ai)]l/zdz
-h

Then we add these four representations and after using (5.88) in this sum, we find
that it is exactly the second term of the asymptotic modil representition (5.12).
Similarly we use Poisson's summation formula (3.34) in leej and le3j and then
use the method of stationasry phase in these representatg;ns. The sg;tionary phase
condition yields the eigenvalue relations (5.6) and {5.9). Finally we find that

Zl (pEJ + pBJ) is exactly the same as the first term in the asymptotic modal repre-
g;ntation (5.12). Hence we have shown that the asymptotic modal representation
(5.12) can be obtained from the simpler asymptotic multiple scattering representation
(5.75). This derivation is indicated "Paisson summation" in figure k.

This completes the derivation of all the connections between the various repre-

sentations shown in figure L.

6. The ray representation

6.1 Introducticn

The exact and asymptotic representations of p in sections 4 and S have been de-
rived for a horizontally stratified ocean of constant depth. We shall now explain
how to obtain a representation of p for an unstratified ocean of nonuniform depth.
We call it the ray representation because it is based on the rays of geometrical

acoustics. Since it is based on rays, it is valid only when the acoustic wavelength
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is small compared to the scale lengths of the refractive index variations and of the
horizontal depth varistions.

First we shall describe how to construct the ray representation synthetically,
by following a recipe or set of rules. These are the rules of geometrical acoustics,
which have s clear physical significance and which provide an intuitively appealing
picture of the process of wave propogation. Next we shall show how to obtain the
ray representation anslytically, by deriving it directly from the reduced wave equa~
tion and the appropriste boundary conditions. TFinally we shall specialize the ray
representation to the horizontally stratified ocean of constant depth. Then it will
become exsctly the explicit asymptotic form of the multiple scattering representation

given in subsection 5.4.1 by (5.75) and (5.8k4).

6.2 Geometricsl construction of the ray representation

To construct the ray representation of p(x) according to geometrical acoustics,

we must carry out the following steps:

1. Determine sll the rays from the source point X to the field point x. These
include the direct ray, the rays refracted any number of times in a sound
channel and the rays reflected any nunber of times at the top and bottom
surfaces. To obtain a more complete representation, various kinds of
diffracted rays and complex rays may have to be included.

2. Cslculate the optical length S(j)(é) of the J~th ray from x, to x.

3. Calculate the amplitude é(j)(zj of the field on the J-th ray at x. This
involves conservation of flux in & ray tube, reflection coefficients at
the top and bottom surfaces, change of phase at a caustic, etc.

{3 )(f_) eiks(j)(g_c_)

b, Combine the fields A on all the rays through x to obtain

the ray representation of p(x) in the form

6.1 plx) ~

e ld)
zﬁ(j)(i)elks =)
J
On a complex ray, the phase S(J>(x) is complex and the corresponding field is
evanescent. On a diffracted ray, the amplitude A(j)(g) is inversely proportional

to some fractional power of k, sc the corresponding field is weaker than that on an
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ordinary ray. At a caustic amssociated with the j-th ray, A(J)(;) is infinite and a
different expression for the field on that ray must be used. Both boundary layer
theory and the uniform representation of Kravtsov and Ludwig provide correct expressions
for this field.

The j-th term in the sum (6.1) can be interpreted as the leading term in the
asymptotic expansion for k large, of the field on the j-th ray. This will be shown
by the analytic derivation of the field on the j-th ray in the next sub-section.
Furthermore, that derivation will show how to construct further terms iIn this field.

The representation (6.1) has been used widely to calculate p(x) in horizontally

(9

stratified oceans of constant depth. In this case the amplitude A x) can be ex-
pressed in a relatively simple form in terms of the refractive index n(z). However
(6.1) is not so convenient to use in the more genersl case of an unstratified ocean
of either constant or non-constant depth. This is because of the numerical difficulty
of solving the transport equation for the varistion of the amplitude along a ray,
since this equation involves the divergence of neighboring rays. As a consequence
{6.1) has not been used widely in the case of an unstratified ocean. Therefore, the

horizontal ray method of chapter III, and the parsbolic equation method of chapter V,

have been devised for use in the non-stratified case.

6.3 Analytic derivation of the ray representation

In the ray representation {6.1), the pressure p is represented as a sum of terms.

iks(f)

Each term consists of a phase factor e and an emplitude factor A(x). We con-

sider each such term to be the leading term in an asymptotic expansion of the form

6.2 p(x) - 5@ 3 (1) ™ (x) .
m=0

The coefficient Ac(g) in (6.2) is just the A(x) which occurs in (6.1), and the other
Amﬂ;) represent corrections to it. We call the right side of {6.2) a wave. We shall
first show how to determine S(x) and the Am(g) so that the wave (6.2) is an asymptotic

solution of the reduced wave equation

6.3 Ap + k2n2(gg)p = 0,
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Then we shall show how the initial values of 5 and the Am are determined by the
source. Finally we shall form a sum of waves to satisfy the boundary conditions.

We begin by substituting (6.2) into (6.3) and collecting the coefficients of
each power of k. Then we equate each such coefficient to zero and obtain the follow-

ing equations:
6.4 (VS)2 = 112(2{_) N

6.5 2VSeVA, + AAS = -pn 5 B=0,1,000, A E0.

Equation (6.4) is the eiconal equation of geometrical acoustics, from which the phase
function S can be determined. Then (6.5) form a recursive system of first order
linear partial differentisl equations from which the Am can be found successively,
starting withm = 0 .

To solve (6.4) we introduce a two parameter femily of curved lines, called rays,
Which are orthogonal to the level surfaces of S, If we denote the parameters by a

and ¢ and let ¢ denote arclength slong a ray, then we can write the rays as

6.6 x = E(Ggasd)) .

The orthogonality of the rays and the level surfaces, which are called wavefronts, is

expressed by

dx
6. =_1
7 Lo

6.8 s (nfgg) ==Vn" ,

This is a set of three second order ordinary differential equations for x,called the

ray equations.

Now we can write (6.4) as an ordinary differential equation along a ray by using

(6.7), which yields

6.9

Bl
H
&

The solution of (6.9) is



g
6.10 s(o) = S(co) + f nlx{o*)Jao* .
o

0
Here S{o) is the value of'S at x{0), and the parameters a, ¢ have been omitted.

Next by using {6.7), we can write (7.5) as the following ordinary differential

equation along a ray

dA

6.11 on—" 4+ A AS = -AA

= . g r WmE=0,1,00e, AL SO0

=1

These equations are called the transport equations. The coefficient 48 in (6.11) can
be expressed in terms of J{0,a4 ) , the Jacobian of the transformation (6.6) from

the ray coordinates 0,8, +o the cartesian coordinates x, defined by

3
6.12 J = z ‘ .

l 3(o,a,0)

In terms of J, AS is given by [10]

|a

6.13 As =

G-

(nJ) .

o

[vf

We now substitute (6.13) into (6.11) and then solve (6.11) to obtain

20 )3 () 1/2 . 1/2
- g9’"9¢g N S L CARRICAD) } ot
6.1k A (o) = o) LAY Ei 2(077(0) pn . {o*)ao".

0

The results {6.10) and {6.14) determine S and the A in terms of the rays and
the initial values S(oo) and Amfco). These initial velues are determined by condi-
tions at the initial point of each ray. Thus for example, the direct wave involves

rays which start from the point source at with phase S(EO) =0 . Ifweseto,=0

0

x, and dx(0,8,¢)/do = Ula,$) where

U is & unit vector. These conditions and (6.8) determine the direct rays. Then

%,

then the initial conditioms for x are x{(0,a,$) =

(6.10) with the initisl value S(0,a,¢) = O determines S. To find the initial values
of the A, we introduce the source term —6(5750) on the right side of (6.3). Then

we find that [11] Am(o) =0 form= 1,2,**+, and
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1/2
6.15 lim J1/2<00)Ao(co) = El?r [3“—9"1—95]
oy 0 n(zo)

Here we have chosen the ray parameter to be a = n(go) sin o where o and ¢ are the
spherical polar coordinates. By using these results we can determine the direct wave
completely.

To setisfy the boundary condition (k.2a) at the top surface, we introduce a top
reflected wave, which is also of the form (6.2). We then substitute the sum of the
direct or incident wave and the reflected wave into the boundary condition, and equate
to zero the coefficient of each power of k. In this way we find that at the boundary
the reflected phase is equal to the incident phase and that each Am in the reflected
wave is equal to minus the corresponding Am in the incident wave. The phase condition
leads to the law of reflection for the reflected rays and provides the initial con-
dition for the reflected phase. This initial condition and the initial conditions
for the Am enable us to solve for S and the Am on the reflected rays. This enables us
to construct the top reflected wave completely.

To satisfy the boundary condition on the bottom surface, we introduce a bottom
reflected wave. We proceed similarly to substitute the sum of this wave and the inci-
dent wave into the boundary condition. In this way we obtain initial conditions for
the determination of the bottom reflected wave.

Each wave reflected from one boundary may hit the opposite boundary. Then it
leads to a new reflected wave which can be found in the manner described sbove., In
this way an infinite sequence of multiply reflected waves can be obtained.

The family of rays associated with any wave may have an envelope or caustic
surface. Then the rays do not cross the caustic but turn away from it. The family
of turned rays constitute a new refracted wave which is again of the form (6.2).

This refracted wave is given by the same expression as the wave incident upon the
caustic, but with a phase change of amount -T/2.

The pressure p(x) is given by the sum of all the waves at x. This includes the

direct wave, the waves singly and multiply reflected at the top and bottom surfaces,

the waves refracted one or more times, and the waves which are both reflected and
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refracted any number of times. In addition there may be diffracted and evanescent
waves associated with diffracted rays and complex rays, respectively. The sum of the

leading terms of all these is just the ray representation (6.1).

6.4  The ray representation for the stratified ocean of constent depth

We shall now apply the method of the preceeding sub-section to the special case
of a straetified ocean of constent depth governed by {4.1) and (4.2). In this case the
ray equations (6.8) become

d2 d2 d d dn
6.16 L -0 ,—-%=O,E-5[n(z)d—z-]=a.
ag ao g

We multiply the last equation in (6.16) by ndz/a0 and integrate to obtain

dz 2 ng-az
6.17 (a; = “;5—- .

Here the integration constant is Just a = n(zo) gin o, where o is the initisl angle
between the ray snd the z-axis. From the first two equations in (6.16), it follows
that each ray lies in a plane normal to z = 0. Since the rays start at the source

X5 = (0,0,zo),each ray lies in a plane y/x = tan 6 = constant. If we set r2=x2+'y2 R

then it follows from this fact, (6.17) and the arclength condition (d_:g/dci)z =1 that
2
dr . a
6.18 ( ic R~

By combining (6.17) and (6.18) we obtain

dr ta

6.19 E;= {n2_‘a2)l/2 .

Integrating {6.19) with r = 0 at z = zy yields

Z Zz

>
_ 8 = adz
6.20 r= i f 2;5:;53z7§-dz [ ?;5:;§ff7§
Zy 2z,

In order to meke r > 0, we have chosen the plus signif z > z, and the minus sign if

z <2 The result (6.20) gives the equation of a direct ray from the source with

0 *
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the ray parameter a .

We next compute the phase S given by (6.10) with S(Go) = 0 and obtain

g z
6.21 S{r,z) = j nfz{g')]ao! = [ n{z) %%i'dz .
[+ z

0 0

By using (6.17) for do/dz with the appropriate sign, we get from (6.21)

s 2
6.22 S(r,z) = J z_§_E§;z7§ dz .
n -a

2

Subtracting and adding a2 in the numerator of the integrand, and then using (6.20),

ensbles us to write (6.22) in the form

Z
>

6.23 S(r,z) = ar + f (nz—ae)l/edz .
Z

<

Now to find the amplitude A, ve use (6.14) with m=0 and note that A_;=0. We

evaluate the Jacobian J by intreoducing the cylindrical coordinates (r,$,2) and the

1B(rs¢s

ray coordinates (0,$,a). Then we write J = laﬁ'fa(r,¢,z)1 Z)/3(0 ¢,a)f *

The first factor is just r , and the second can be computed by using (6.17), (6.18)

and (6.20), Thus we find

b4

> 2
r, 2 21/2 n
6.24 J = ;I-(n -8") J (n2~a2)3 5 dz .

Z<

We now use (6.24) and (6.15) in (6.1L4) to obtain

12, aoap al P e
- -1
6.25 Aylr,z) = %;— [n"(2,)-a"] [n2(z)-a2] rf (ne_a2)372 dz ‘
<

The leading term in the direct wave is Ao(r,z)eiks(raZ) with Ay given by (6.25)
and 8 given by (6.23). This is exactly the same as the term with m=0 and i=j=1 in
{5.84) for pzl(r,z) . To see this we first use (5.77) for BesIl/aa2 with m = 0 in

(5.84). We then observe that (5.76) with m = 0 and J = 1 is the same as (6.20).
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Therefore the root b of (5.76) is jJust the value of the rsy parameter a for which
the direct ray passes through (r,z) . Thus the identity of the two expressions is
shown.

By proceeding in the same way, we can calculate the leading term in each singly
and multiply reflected and refracted wave. BEach one turns out to be identical with
one of the terms in (5.84%)., Thus the total field p(r,z) given by the ray representa-

tion is exactly the same as (5.75) with the pIJ given by (5.84).
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CHAPTER III

HORIZONTAL RAYS AND VERTICAL MODES

Robert Burridge Henry Welnberg
Courant Institute of Muthematical Sciences Naval Underwater Systems Center
New York University New London Laboratory
251 Mercer Street New London, CT 06320

New York, NY 10012

1. Introduction

In recent years, there has been s growing interest in long-range, low-frequency
acoustlic propagation in the ocean. Very often three-dimensional ray-tracing tech-
nigues are used to anelyze this problem, but as the ranges incresse and the frequen-
cles of interest decrease, this kind of ray-tracing loses its effectiveness.

The theory of normel modes offers an alternative approach. Pekeris [1] was the
first to apply the tHeory to underwater acoustics and his results for shallow water
were later shown to agree well with the experimental date gethered by Worzel and
Ewing [2] whose analysis was mainly concerned with dispersion. Tolstoy [3] later
showed that wave-guide theory could be used to predict intensity levels in shallow
water, However, the analyses of Pekerls and of Tolstoy reguire the medium to be per-
fectly stratified, that is, the properties of the medium are assumed constant on
horizontal planes. Pierce [4] extended the theory to media having & slow variation
in the horizontal directions under the sssumption that the coupling between modes can
be neglected. This assumption is borne out to zero order in the slowness of hori-

zontal variation by our anelysis. The principal resultsof his calculations were that
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different modes follow different horizontal paths and that the intensities along
these horizontal rays satisfy transport equations in two space dimensions.

In this peper we shall alsc be concerned with scoustic propagation in an almost
stratified medium which we shall take to represent the ocean. The method consists
in introducing a small parameter £ representing the {slow) rate of variation of the
medium in the horizontal directions. The velocity potential is sought in the form
of an asymptotic power series in £ where the vertical structure is expressed in terms
of the normal mode eigenfunctions. We find an eikonal equation and a recursive
system of transport equations for the coefficients which depend only upon the hori-
zontal coordinates. This scheme is closely anaslogous to geometrical acoustics in
two dimensions. It was first described by Keller[5] and later used by Shen and
Keller[6] in the context of surface waves on water of variable depth. A similar
theory has also been developed by Rulf[7] and by Bretherton[8l. Our method has much
in cormon with these but in the systematic use of the small parameter 1t is more in
the spirit of the geometrical theory developed by Keller and his coworkers for scalar
and vector wave equations[9,103. The work reported here is a slight expansion of &
psper by Welnberg and Burridge which sppeared as reference[11].

In sections 2 and 3 we trest time-harmonic dlsturbances by considering solutions
to the reduced wave equation. The small parameter € is introduced in section 2 where
we suppose that the properties of the medium depend upon the horizontal coordinates
X, Y only through the combinations x = €X, y = €Y. This being so we seek at first a

solution where the velocity potentiael ¢ is expressed in the form

1.1 o{x,y,z38) ~ eﬂ(x,y)/(ia) 2 Av(x,y,z) (iS)v N
v=0

z being the vertical coordinste and a factor e_mtj(iE)

iz understood. Each Av is
expanded in the eigenfunctions ¢&(x,y;z) of a certain differential operator in =z

whose coefficients depend parametrically upon Xx,¥y:

1.2 A, (x,y,2) = kzoas(x,y) b (x,y32) .
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AO is found to be a pure mode in that it is e multiple of & single elgenfunction mp.
An eikonel equation is found for € and then a recursive system of transport equations
are found for the aﬁ(x,y). These equations are virtually identical to the corre-
sponding eguations for the ordinary geometricel wave theory in two dimensions. The
leading term found in this way sagrees with Pierce's solution.

As usual (1.1) is not valid near caustics. The necessary modifications are
discussed in section 3. There we draw heavily from the work of Ludwig{12] and
Babich [13] .

In section 4 a more general time dependence is considered in connection with
the full wave equation. We use a generalization of the ensatz (1.1) in which the
phase function and the coefficients may depend upon t = €T in addition to the space
variables. Attention there is restricted to the leading coefficient Ao, which in
practice yields a good approximation whenever the ray theory is valid. We consider
the Airy phase, which 1s & space~time analog of the smooth caustic and suggest that
some further work might be done in comnection with the high frequency arrival or
water wave and with modes propagating near cut-off. In this section at no further
cost the wave speed is allowed to depend upon eT.

Two typical special cases are studied in section 5. The first concerns acoustic
propagetion in an ocean with constant sound speed but where the bottom depth varies
linearly with Y. The ray configurations are computed end plotted for various pro-
pagating modes. Pierce[4] considered a similar model in which the reciprocal of the
bottom depth varied linearly. 1In the second example the square of the wave number
decreases linearly with depth.

Finally in section 6 a realistic model ocean is considered. The acoustic am~
plitudes are computed and found to agree well with real data. Also in section 6 is
e brief description of the computer program which determines the normal modes, solves

the ray equations, and finds the field quantities.

2. Acoustic propagation in an almost stratified medium

An almost stratified medium is & medium whose properties vary slowly with the

horizontal coordinates., This notion is made precise by introducing a small
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parsmeter £ and supposing the wave number k depends upon X,Y, the horizontal coor-
dinstes, only through the combinations X, €Y. Moreover the boundaries will be
teken as almost horizontel in the sense that on the boundaries the vertical coordi-
nate Z will be given as a function of €X and €Y.

Hence if ¢ein is the velocity potential in an almost stratified ocean then ¢

satisfies the reduced wave eguastion

2 2 2
2.1 A‘% + 22, 3—2 + x°(eX,eY,2) ¢ = 0
X" YT 9%

in the region
2.2 27(eX, €Y) < Z < z¥(ex, eY) ,
2 2, 2 :
where k~ = 0w/ , c(eX,eY,Z) being the sound speed.
+
On the boundaries Z = Z (X, €Y) we assume the boundary conditions take the
form

2.3 oti(ex, EY) ¢ = Bi(ex, £Y) m%= o,
on"~

+ + +
where & , B are real and 3/9n” represents the outward normal derivative. 1In fact

2 _ dz° 3¢ _ 3z” 3¢
ol , 3% _ 3% X 39X _ ¥ oY
i g l+_32f.2+ a2 1/2
29X oY

Upon introducing new coordinates in which the horizontal distances are con-

tracted,
2.5a x=€X,
2.5b y=¢eY,

2.5¢ z= 2 ,
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into the above equations we obtain

2.6 o - (1e)2Lo=0

with boundary conditions

* b4 +
2.7 ) + B Y (rayse) B+ (1e)?0 -+ w9 = o
at z = Zi(x,y) .

In (2.6) and {2.7) V is the horizontal gradient operamtor (3/%x , 8/%r) , L

is the operator given by

2
2.8 L¢= g_g+ lxy,2) 6,
3z
+
and Y~ is given by
+
2.9 Y (x’y'§€) = 1 173
[1 - (1€)? (VZ*)Q]

By analogy with existing geometrical wave theory we sghall seek ¢ in the form

of a series

2.10 d{x,y,z;) ~ eO(x,y)/(ie) ) (1e)¥ Av(x,y,Z) s
v=0

which is interpreted to meen that

e

I (1e) A, {x,y,z) is asymptotic to e
v=0

-6/1e #(x,y,z;€)

as € + 0 .
Substitution of (2.10) into {2.6) and boundary conditions {2.7) will lead in
the usual wey to an eikonal equation for 6 and to various transport equations. In

order to perform the substitution we shall need
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g
— Y
2.11 ve=e¥f 7} (Ve + VA ,) (1)1
v=0
and
8 .
2.12 Vo=ef 7 [(va)zAv + VP0n, ) + 2 VOTA,_ + VAR, ] (1e)V7%
v=0
where for convenience in notation A-l = Q, A_.2 =0.
Substitution into (2.6) now gives
2.13 I [(VB)EAv - A, + VOOA |+ 2 VBeVA 4 vav_g] (1) 2=0.
v=0

+
Before substituting in the boundary conditions let us write Y~ as power series

in 1g :
2.1k Yix,yse) = £ Y: (x,y) (1)%%,
where

-1/2
2.15 y§ = (-1)% (vzt)2e |

q
Hence from 2.7

+ N ) 2t 2q

2.16 oo+ B ) Yo l%t (1e)® vz~ v¢] (1) =0 .

q=0

On substituting (2.10) into (2.16) and using (2.11) we have, after some rearrange-

"
ment, that on z = 2 (x,y)



AY)
o o« 1 A
2.17 G‘.t Z (is)\) A\) " Bi z { z Yt [‘3_;\)'—2(1
v=0 vso Lg=0 &

+ £ vi _
+ V2T 2 VBA 5, gt V2 VAv-Eq-E] (ig) } 0,

where v, = [v/2], is the largest integer not greater than v/2 .

The assumption of the asymptotic nature of (2.10) allows us to equate to zero

the coefficients of individusl powers of it in (2.13) and {2.17) to get

2 2 2 =
2.18 (ve) Av - LAU + ¥ eAv_l + 2V8 VAv~1 + ¥V Av_e =0,
V= 0,1,2,..1,
+
end on z = 27 ,
v
1 SAV

+ + + * +

* X = “29 ~ . T =
2.19 oA, + B QEO Ty { 5 T VEUCUeA, Lot V2 VAv-zq-%} o

In (2.19) let us write the terms in A, on the left and separate the terms in

Av-l from the rest of the right side:
2.20 * £y *vz*.ve " ( )1, v = 0,1,2
. CXA\)+8 -a—z-—__B[Z A\)—l+ \)~2x,y,A0,..-,AV_2 » V= Uyl,dyenay
where
vy
+ = gpt *
2.21 By ok shgseeshy o) SVEVA, 5+ ]y
q=1
Pu-zg | vztvea + vztea
EY? v-2¢-1 v-2¢-2 | °

Upon setting v=0 in (2.18) and (2.20) we obtain

2 -
2.22 (ve) Ay - LA, = ]
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and

2.2 iA+i3A°—o
.23 A 8 Frai .

Equations (2.22) and (2.23) define an eigenvalue problem which shows that (VB}Z is
an eigenvalue of L and Ab 8 corresponding eigenfunction.

Let

2.24 A, A%,

o 1 s Ag s e be the eigenvelues of L .

We shall suppose that all elgenvalues are simple. Let

2,25 wo . wl N we s ++. be the corresponding eigenfunctions

normelized with respect to the inner product of {2.30).

Suppose that
2.26 (v)? = Agix,y} .

This is the eikonal equation for § and may be solved for & by the method of charac-

teristics. In fact (2.26) leads to the ray equations

2.27a %s- (Ap%—’s-‘- = ;—;"- ,
2,27 &0 = ;;,2 .
2.28 %= A

where

2.29 (%35‘- 24 (%}2 =1.

The rays are the curves satisfying (2.27a) and (2.27Tb) and the arc length is denoted

by s. Once initial values of %f R %E . B are given at & point, (2.27a) and (2.27b)
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can be integrated to obtain the ray whose initisl direction is (%f

can be {simultaneously) integrated to find § at points along the ray. We must, of

. %5) and (2.28)

+ +
course, glready know AP as & function of x,y . HNotice that since L , & , B~ depend
continuously on x, ¥y , so do the Ai .

Before proceeding to find the equations for the Av let us define an inner pro-

duct on the space of functions of z, Z {x,y)< z <Z+(x,y) .

We set
2.30 <f,g> = <flx,y;2),e(x,y32)>
+
Z (x,y)
S fx,y;z)gl(x,y;2) dz .
Z (x,y)

It can readily be shown that the wm of {2.25) can be normsalized to satisfy

2.31 W Y> = 8o »

where Smn is the Kronecker deltsa.

From (2.22), (2.25) and (2.26) it is clear that
2,32 A (x,7,2) = a_(x,¥) wp(x,y;z) .

We shall now obtain a transport equation for a . Setv= 1 in (2.18) and (2.20) to

get

2.33 32A, - LA, + VPGA_ 4+ 2VO:VA_ =0 ,
P 1 1 [s] [+]

end

2.3 of a + 8 ;ék = -6 vz'eve A

+
on z = Z°(x,y) .
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Now teke the inner product of (2.33) with wp :
2 2 . "
2.35 AWy Ap> = U, TA> + T8 e + 20Oy, TA> =0 .

But on using (2.23) and (2.34) we find that

_ .2 2o Tt
2,36 <wp, a,> = Ap<wp,Al> -a VO [wpvz]_ .
where
2 + - 2 + + 2 - -
2.37 D V210 =) Geys20) V2 Gy )= 9 (6,3327)927 (x,y)

Also since <¢p, wp> = 1 it follows on taking gradients that
2 +
2.38 < Ty > = =
3 2 ¢p, Wp [wp vzl
Thus (2.35) reduces to
2.39 o a, *+ 2V8:Va =0,

which is the transport equation for &, -

Equation (2.39) may also be written as

2.k0 Ve (a2 V6) = 0 .

On integrating (2.L40) over s rey tube and using the divergence theorem we obtain
2.41 Xpai 80 is constant along the tube,

where 80 is the cross-sectional width of the tube of rays.
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From the Sturm-Liouville theory of self-adjoint ordinary differential equations
we know that the functions ¢m’ m=0,1,2, form a complete set. Therefore we shall

essume that

[--]
. - k - 0
2.42 A, (x,y32) = kZO a, (x¥) ¥ (x,¥32) + 6 (x,y52) ,

where Gv is sny function satisfying the boundary conditions

3G,

oo at NV pteo, o,
2.h43 oG, + B =B [vz VeA,  + Fv~2(x,y,A0,..., A, ;)]

+
on z = Z {x,y) .
Suppose, now, that the aﬁ are known for all k end y = 0, 1, 2, «.., Vv = 1.
Then we may determine G to satisfy (2.43). On substituting {2.42) into (2.18) and

taking the scalar product with wm , m + p, we get

M _ 42  42,-1 2 .
2.hh 8. = (Am - xp) <y VUBA, L + 2V8VA

2 2
. + VA, O - L6

1

To find as we teke (2.18) with v replaced by v + 1 and take the Inner product
with wp to get

2y A

2.5 Ap p ol T <wp’ v+l>

2
+ vaa<pp, AP+ 2VE<y L TAS + <y, TR > =0 .

But
Ay O *
- - R
2.46 <¢p’ LAyer” = <L¢p’ Ayar” +[§p 9z 52 el }

i
oo
&
Ko
<
-+
1
\'2
+
<=
g
P
(4
@
"l
[\
+
wie
<3>
-+
=
N
—
] +

I
>
ke
P
Le)
42?
-+
b
v
“+
e |
‘_dﬁ'-
a————
1
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<1
2
<
H
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P
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so that from (2.45)

2
2,47 VP <y, A + 2 VO VA + <, VeA\’_l>

= - [prZ-VeA\,]+ - [wp Fv-l]j .

Substituting (2.42) into (2.47) gives

2y P veP = - 72g. .
2.48 v°e & + 2 96 Vav A <wp, G,> -2ve <wp, VGv>

o
k 2
- . < > - <L >
2v0 L By <V T v VA

T ok + +
- [wPVZ-ve(kZO & U+ Gv)] - {"’p F\)_l] .

We now notice that the k = p terms in the two sums in (2.48) cancel so that the

right member of (2.48) involves only functions already determined, including the at
for k * P . As usual the left member is a directional derivative of ag along & ray.

Thus (2.44) and (2.48) form a system from which the a& can be found recursively.

3. Uniform ssymptotic expansions in regions containing caustics

We shall be concerned in sections 5 and 6 with the field due to a point source.
The horizontal rays all pass through the source point and moreover in the examples
treated these rays envelop curves called caustics. Whenever neighboring rays come
together as at a point source or at a caustic the simple theory of section 2 becomes
invelid in the neighborhood of the points of concurrence. In this section we shall
show how the ray theory mey be modified to treat first the field near é smooth caus-
tic and then we shall discuss certaln difficulties which prevent us from satisfacto-

rily dealing with the point source.

3.1 The field near & smooth caustic

It will be seen in section 5 that in quite simple cases rays emanating from a
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point source will envelop & caustic. When this occurs neighboring rays come to-
gether and the theory of section 2 would predict an infinite amplitude. To obtain a
valid approximetion near a caustic we shall follow Ludwig [12] and seek an asymptotic

expression for ¢ in the form

)

—— o0

3.1 ¢ (xy,2,8) v e'® ] [(ie)" Ay (ey.2) v (€23 o(x,y)]
v=0

+ (1e)Y (1al/3) B, (x,y,2) vi[e~2/3 p(x,y)J] s

where V(Z) is the Alry function of -Z and so satisfies

3.2 V' (g) + gz V(g) =

Substitution of the expansion (3.1) into {(2.6) yields
v-2 2 2
3.3 e ) [(ie) {[(v8)" + p(Vp)" ~ L] A, + 20Vp-¥eB } V
+ (16)°72 {[(8)® + 0(%)? - 1] B, + 2Vp-VeA } (1e1/3) yr
- 2 2
+(ie)v l{VzeAv + EVB-VA\) + pVp B, + EQVp-VBv+(Vp) B\)} v

+ (1e)v'l{veeav + 2V6-VB + VepA\) + 2VpTA )} (1e2/3) v

+ (1) V2Av v+ (1e)” Bv(iel/B) v'] =0

The boundary conditions (2.16) lead to
)
— -]
3.k R (ie)v{a(A\) v+ 1et/3 B, V')

v=0

9B
+ B Z Y[(-—A\’—-‘lv+iel/3 -\J—CLV')

+ (pr'VZ By pgy * VOUVIA, 5oy * VEVA o o )v

1/3 (g . . -
i€ (Vp VEA, oy * VOB, oy + W VBV_Qq_2>V‘];— 0,
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on z = Z(x,y) where for clarity we have dropped the superscript *, and v, = [v/2] as

usual.

Equating coefficients of {ie)V V and (ie)V (iel/B) V' in {3.3) separately to

zerc we obtain
3.58 [(v8)% + p(Vp)? - L] A, + 20V0-V6B
\Y

2 . 2 . 2
+ V eAv_l + 2V8 VAv-l + oV 0B, , + 2pVp VBv-l + {9p) B,y

*VA =0,

and

3.5b [(ve)2 )2

+ p(V0)" - L1 B + 2Vp+VoA,

2 2
+ ¢ er-l + 2V8 VBu-l + ¥V DAV—l + 2Vp VAv-l

2 -
+ V B\)_2 =0
Similarly (3.4) gives
V1 34, _,
3.6a a A+ B qzo Y ——5241

+ pr'VZBv_Zq_l + VQ-VZAV_2Q~1 + VZ’VA“_QQ_Q] =0 ,

V.
1 [es,,
3.6b aB, +B I v —5;J1 + Vp-VZAv_

q_._.o q 2g-1

*VOVIB L, 0+ VBV, o o ] =0.
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Once asgain separating terms in Av . Bv from the rest we get

BAv
3.7a o Av + B Fr

- BLpYp*VzB , + VO-VZA _, + E, ,]

BBv
3.Tb o Bv + B 5a

- B[Vp*VZAv_l + VG-VZB\)_l + Fv-2

]

where E F depend on A, B

v-2 * Fy_o . 0<u<vV-2butnot A A B

u? v-17 Ay 2 By o By
Setting v = 0 in (3.52), (3.5b), (3.7a), and {3.Tb) we see that, if we require that

3.8 VgeVo = 0 ,
then
3.9 (v8)2 + p(¥p)? = xg ,

where Ai is an eigenvalue of L and A0 . Bo are eigenfunctions of L with the boundary

conditions
BAO
3.10a oA+ B e 0,
BBO
3.10b o Bo + B Frale 0.
Therefore we set
3.11a A (x,y,2) = ay(x,y) WP(X,y;ZB s
3.11b By(x,y,2) = by(x,y) wp(x,y;Z) .

On setting v = 1 in (3.5%a) and(3.5b) and taking inner products with wp we obtain

2 2 20
3.1%a 2V6+Va, + V 6a_ + 20V0Vo_ + pV pb * (Vo) b, =0
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and

3.1 2V8+Vo  + Vo8b_ + 2Vp+Va_ + Vopa_ = 0 .
(e} (e} [o] (o]

As in section 2 the boundary terms have canceled by virtue of (3.Ta) and (3.7Tb)
withv=1.

We note that (3.8), (3.9), (3.12a), and (3.12b) reduce, as they should, to the
corresponding equations given by Ludwig [11] when we set As = 1 . PFollowing Ludwig

let us write

o+
3.13 8" =0 % 2/3 03/2 N
and

+ 1/2
3.14 a, =& *p b,

(Here t refers to whether or not the ray has touched the caustic and has no connec-
+
tion with the superscripts referring to the boundaries 2°.) Then it follows from

(3.8) and (3.9) that

3.15 (v65)? = )\S .

1/2

By forming the linear combination (3.12a)*p~'“x(3.12b) we also have

-1/2

3.16 2V6t-Ve,i + [VPe% 7 1/2 p™2(90)?] az =0,

which reduces to

3.17 ovet.y (p'l/h az) + voe* (p'lﬂ+ a:) =0.

+
Thus 8 mey be found by solving the ordinary eikonal equation. The combinations

— *
o] /4 ao are seen to satisfy (3.17), the ordinary zero order transport equation.
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1/k

- * +
At the caustiec ¢ becomes zero and p LN become infinite in such s way thet e,
remain finite.

>
For Av R Bv with v > 0 we set

o0
_ Xk
3.18s A, = ZO g Y * G
v Lk
3.16b B,= ] ®voy +H ,
pY k=0\)k v
3,
3.19a a G + B 3 < - B[pr~VZBv_l + VG-VZAv~l + Ev-2] ,
o
3.19b aH, +B8 5= =-B[Vp-Vza, , +VO-VZB, ) +F ,1.

Now suppose aﬁ s bﬁ are known for all w=1, 2, ..., v - 1and all k . Then Gv and

H, may be chosen to satisfy (3.19a) and {3.19b). For aﬁ R bﬁ , k # p we use (3.5a)

and (3.5b)
m 42 2y=1 2 .
3.208 &, = (xm - Ap) <wm,v eA\)__l + 299 VAv‘l
+ pVPpB, 4 20VpeVB_ . + (vp)%B
v=1 V-1 V-1
2 2
+ VoA, , - {Ap - L) 6>,
m_ 2 2,-1 2 .
3.20b b, = (A - xp) <y V0B, _, + 2VO-VB, ,

2
+ V pAv-l + 2Vp VAv-l

2 2
- - >
+ VB, (AP L) B> .
For ag . bs we replace Vv by v + 1 in {3.5a) and {3.5b) and teke inner products

with wp . It is convenlent to treat the terms in (3.5a) separately:
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2 2 2
3.21 <,,L(V8)" + o(V0)" - L] A, ,> U 00 - L) A,

oA
=1 V+1 | 4+
B I:wp(ow‘wl +8 )]

+
= [t{)p(pr VZB b+ V6~VZA\)) + wa\)—-l]—
T .k
= [va.vzwp kzo by U+ H +

&
k +
+ V6 Vzwp(kzo &, wk + G\,)+ wav-l]—

by {3.7a). Also

. Ve .
3.22 <wp,2ve VA, ;> = 2V8+Vay + 2V6 by, 76,>

o0
x
+ 298, [ al<y V>
k=0 v Pk

- p L
2V0+Val + 2V6-<y V0 >

+

k
2vg § av<¢p,v¢k>
kdp

. P 29+
[ve VZa\) wp]_ .

where we have used (2.38). It will be noticed that the last term in (3.22) precisely
cancels the term k = p in the second sum of (3.21) so that a,s disappears from these
contributions.

Similarly
3.23 <U,,2pV0 VB, > = 2pr'Vb€ + 2pr-<wp,vHv>

o
k
+ 2pV%e | bl<y Ty >
x=0 v 'p k
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= 2pr'Vb8 + 29?p-<wp,VHv>

K
+ 2pVpe § bv<¢P,Vwk>

ktp
- [o% - vzo? 47"
v 'p- ?
where we have used {2.38) once again. As before the last term cancels the term v = p
in the first sum of (3.21). Thus no term in bg arises from these contributions.

There remains from (3.5a) the following:

2 2 2 2
3.24 YT 0a> + [oV0 + ()°I<u, B> + <y, VA, >

2. p 2 2 P 2
Posd + [0% + (767)] v + VPocy 6>

+

2 2
(0% + (%0)%] <y B> + <b VoA >
Collecting (3.21)-(3.2L4) together we have

P 2, P P 2 29 P
3.25a 2V Ve + V6a + 20Vp-Vby + [pV7p + (Vp)"] b

= g function of previously determined quantities.

Similerly from {(3.5b) we may deduce that
cTpP 24,P TP 2 P
3.25b 2Vo va + ¥ ebv + 2Vp Vav + 9 pey
= g function of previously determined quantities.
(2.25a) and {3.25b) are the higher-order transport equations which as usual are
inhomogeneous versions of the zero-order equations (2.12a) and {3.12b). The coeffi-

cients &3 for m $ p are determined by the algebraic equations (3.20a) and (3.20b)

This completes our theory of the field near a smooth caustic.
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3.2 A point source in an slmost stratified medium

Whenever neighboring rays come together the theory of section 2 breeks down
since (2.41) predicts infinite amplitudes. This situation arises in our applicaticns
not only at smooth caustics but in the neighborhood of a peint source.

By analogy with the exact solution for a perfectly stratified medium i1t might

be thought that an esymptotic soclution of the form

3.26 o(x,y,238) = ) {e” A, (x,y,2) H{()Z)ES"l 8(x,y)]
v=0

+ ¢’ B, (x,¥,2) Héz)'fe_l 8(x,y)1} ,

where Hée) is the zeroth order Hankel function of the second kind, would be uniform
near 8 = 0 . Indeed, when the dependence upon z is absent this ansatz is velid for
the scalar Helmholtz equation nesr & polnt source [14], and if the coefficlents of
the original equstion are regular near 8 = 0 an argument of Hadamard [15] in his con-
struction of the elementary solution shows that Av R Bv are also regular.

A slightly neater slternative to (3.26) due to Babich [13] is slsc uniform near

the source for the scalar (z-independent) equation. This is

3.27 ¢(x,y,238) = ] A (xy,2) £ (€,8) ,
v=0

where

3.28 £,(c,0) = & o° () (0/¢) .

However, neither (3.26) nor (3.27) are valid for our problem unless, at 6 = 0 ,
<wm N V¢n> = 0 . This can arise, for instance, when the ocean has axial symmetry
about the vertical through the source point —— an unpleasantly restrictive hypothesis.

Let us illustrate the difficulty which arises on using (3.27) and (3.28). We

firet note the recurrence formulae for the fv:
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1 - 2

3.29a 2 f,=2lv-1)f, -0 £
31,

3.29b 35 9%, »

On substituting (3.27) into {2.6) and using (3.292) and {3.2%b) we obtain

S .2 2
3.30 véo {(8°[(v0)a, - 1A]

2 2,62
+ [V(8%)eva,_, + 1/2 V(67)A_, + 2(v-2)14  ,]

2 =
+ VA, L} e, =0,

On equating the coefficient of f_ , to zero we get

2

2 =
3.31 (ve) Ao - LA, = 0.

In order to treat the boundary conditions we note that fv = 0(e) as €+ 0.

+1/fv
Substituting (3.27) into (3.28) and taking only the terms in £ ve obtain

BAO
3.32 o Ao + B Frai o,

so that (VG)2 = A2 as usual with A_=s8a ¥ .
P o °'p
To obtain the transport equestion we need to equate the coefficient of f—l in (3.30)

to zero and then teke inner products with wp . This leads to
3.33 P0A2qy_,a > - <y_,La>] + T(e%)+Va_ + V(6%)a <b_,Th >
: p Vet 1 o o 'p’ 7P
20 _
+ 1/2 V°(8 )ao - 2<wp, ¢p> e, =0.

The first term of {3.33) yields a boundary term on integration by parts and so does

<wp , V¢P> by (2.38). But these cancel becsuse of the equation obtained by taking
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terms of order f_, in (2.16). Thus

1
34, 2
3.34 (0 ) +857) £, - BVZ-OVBAE" £, =0 .
2 1
But €” £ | = - ga £5 by (3.29a), so that
3
3.35 an +8 ggl =-Lvven, on u=zt.

A1l that remains of (3.33) is the zero order transport equation
3.36 V(6%) Ve, + 1/2 V¥(6%)a - 2(V6)° 8 =0 .

This may be put in the form

2
9 2 V6
3.37 ;; v (ab g—)

L]
o
.

The conservation equation analogous to (2.41) is thus
3.38 kpai 80/6 1is constant along & ray tube.

But here 80/6 and hence 8, > is finite and non-zero as € + 0 at the source. So
far 8o good! The difficulty arises when we now take the inner product of the coeffi-

cient of f_, with wm , + p , to get <wm . Al> . This leads after some reduction to

1

2,,2 2 2 _
3.39 8 {Ap = A <Y LA >+ 1/2 V(8 >[<wm,va> - <vwm,wp>350 =0 .

But as 6 + 0
3.40 1/2 9(8%) = 0(8)
so that

3.1 <Y, . A>  is G
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unless

3.42 NN sz> - <V, ¢P> =0.

This points up the difficulty and shows that the form (3.27) is not uniform near the
source since when 6 is sufficiently smell the term in fl will dominste the one in fo.
Nevertheless, we shall assume the term in fo gives &8 good zero order approxima-
tion even though we do not know the correct form for later terms in a wniformly
asymptotic series.
In order to find a from (3.36) we need some initiel conditions. We shall
assume that at the source each mode is excited to the same extent that it would be
if the medium were perfectly horizontally stratified with properties everywhere the

same as at x = 0 , y = 0 , the source horizontal coordinates. Thus for a point

source at z = Zs in such a medium we have
«© (2) Ar

3.143 ¢lr,z) =inr  § H 2}y @) (2).
p=0 ° £ » 8" 7p

Bech term in (3.43) which corresponds to a propagating mode will give rise to a ray

solution whose leading coefficlent will satisfy
344 g = -im wp(O,O,ZS)

at the source point. The equation (V9)2 = As with 6 = 0 at x = 0, y = 0 will deter-
mine & and the rays after which (3.36) with initial conditions (3.4k4) will give us
8, for each p . If we denote the &, belonging to lp by ag then the solution in a

region containing the source will be taken as

3.45 6= J R0y (xy,2)02) (o/e)
p=0 b [

in accordance with (3.27) and the discussion above.
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L, Space-time rays for more genersl time dependence

So far we have considered only time harmonic disturbances which are proportion-

T
al to eiw . After cancellation of the exponential factor such signals are governed

by the reduced wave equation (2.1) where

2
w

b1 K°(eX,e¥,2) = —
c“{eX,eY,2)

.

In this section we shall generalize the ansatz of the earlier sections for more gen-
eral time dependence and st the same time we may allow the sound speed c(eX,eY,Z,eT)

4
and the boundaries Z = Z~(eX,eY,eT) to depend weakly upon the time T.

4,1 The ray theory

We start with the full time-dependent wave equetion

b 1 9% 2% 2% _ %,
o WP wf  agf

k]

with boundary conditions in the simple form

+
4.3 —8—9=0atz=o,@Q:omz:z(ex,ey,em).
We choose this form of boundary condition partly for convenience. It would in prin-
ciple be possible to ellow the upper boundary to be the free surface of the ocean
disturbed by surface waves. However, in order to set up the correct equations in
that case we should need to linearize the equations about & dynamic state instead of

linearizing about equilibrium but this would lead us too far from our theme. Trans-

forming to the contracted varisbles
L.y x=¢eX,y=¢€Y,z=2,t=c¢€T

(4.2) becomes

L]

k.5 R R

¢ {ie)2 2
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We now use the new ansatz replacing (2.10), namely

o«

es(x,y,‘c)/(iE) ) a
V=0

4.6 $(x,y,2,t) = x,¥,2,t)(1e)V

where S is not necessarily linear in t and AV mey depend upon t &8 well a8 X,¥,2 .

On substituting (4.6) into (4.5) and cancelling the exponential we get

<«©
1,42
kot \}£0§ cefstav * B *BSA L ot A i)

- {(VS)QA\} +2VSeVA _, + &?2;;\)“1 + 93 ]

Va2
2 v-2 _
+ SzAv }(ie) =0.

)\)—2

Equating coefficients of (ie to zerc starting with v = 0 we obtain

1 2 2 2 A = . = =
4.8 c2 StAO - (V8) A+ aon = 03 Ao 0, z =03 2 A 0, z=2 .
Let us write

4.9 w=-8 ,k=V9s.

Then (k4.8) shows that

4,10 AO = aowp(w,x,y,t) .
where

2 w2 2
4.1la agwp+(;§-1~z_)¢9=0,

4
4,11 wp=o,z=o;azwp=o,z=z,
L "
Jdle < > = gz = 6§ R
wp’wq f wpwq PQ
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For a given w this is an eigenvalue problem like (2.22), (2.23) but here w is not
given in advance and we must regard (4.10), (k.11) as defining a relation between w

and k

2

4,12

P

2
= }“p(wsx’Yst) s SAY ,

where as in (2.24) the Ag form s decressing sequence tending to -« . Actually we
see from {4.9) that (4.12) is & partial differentisl equation for S analogous to the
eikonal {2.26), and like that equetion it may be solved by the method of character-

isties. The characteristics are defined by the ordinery differential equations ([16])

dk

%.13 ax _ dy . at ds = b
k k A3 A A (A_~wd A ) A_9d_A
X ¥ pwp D p wp pxp

= et W
A3 X A3 A ?
PyYyP ‘Pt

and are called horizontal space~time rays. This system may be solved simulteneously

for x, ¥, &, Kk, ky w and 5 provided thet starting vaiues are given satisfying (4.12)
at some point on the ray. Notice that if ¢ and the boundary conditions are indepen-
dent of t. then so is AP end by (4.13) w is constant along each ray.

On differentiating (4.12) with respect to k we obtain
L1k k= Apawxpvgm .
Thus the first three members of {L.13) give

4.15 o = e

But this tells us that the horizontal space~time rays are traced by points traveling

with the group velocity. We now equate the coefficient of (ia)_l in (4.7) to zero.
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This gives
2 2 2
4.16 L - i - Us.
[c2 StAl (vs) Al + BZAI} + 2(c2 StAa,t vs VAO)

1 2 _
+ (C2 5.t -VS}AQ— 0

with boundary condition (compare (2.34))

+
L7 A =0 atz=0,04 =-V2 V54 .

Teking an inner product of (4.16) with wp we obtain

2
W 2 2
4,18 <zpp,(~-c2 - X% )Al + O A

W
- D2 s . - >
2 wP,ce(ao,th + aowp,t) + E’Vaomp + k prao
- <y (Lm + Vkla Y >=0.
p’ c2 t ="o'p
In order to reduce (4.18) we use an equation obtained by differentiamting (L.llc) with

qaQ=Dp:

1.2
X, --1 v
19 Ypr > = - 5|, T

+

and one obtained by differentisting (4.1la) with respect to k:
2 w2 2 w

4. 20 azv}&wp + (:é- -k )Vg"’p + 2(:2- VEM - g)q)p =0,

which leads on taking an inner product with QP to

1
y,21 kam<wp, 02 ¢p> =X ,

or

P =
b, 22 wlvkwl s Z v, x| .
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Thus (4,18} vecomes

2
4,23 [wpazA 3 YA ] + wp

+
NI EVZa - 0%y =5 2 "

P, t o
+
Z

- 2[m<w = 2 w >a .tk Va ]- [<w R 2 w >0, + ve k]a =0.

But the first two terms of (4.23) cancel by virtue of (%.11) and {(4.17). Thus

finelly we obtain using (4.21), (L.22)
Lok 2wy 5 Yy >(a o+ TweVa )
, [o]
+ (< 1 Y Sw, + Vek + 2u<y i Y .>)a =0
p’2 P Y p’,2 "t o :

This is an ordinary differential equation for e, along & ray since by (L4.15) it may

be written

1 da'c>
k.25 2wy == Y >
p’.2

p 4t

* (Sl Tg Uy + YT by > TR)e = 0

We note that if ¢ is independent of t, as is commonly the case, (4.23) on multiplica-

tion by a, glves

k.26 3 (w< i ¥ 8, 2y + V’(a k) =

This is & space-time divergence equation and by (4.15), (4.21) the space-time vector
k.27 (aig, w<$P,§E wp> ai)

is parallel to the rays. Thus on integrating (4.26) slong a narrow tube of rays

bounded by surfaces Sl,S2 on which t = constant we have
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s
1 252 _
4.28 [&z m<lpp,c2 wp> B'o]Sl =0.

where 6I is the ares cut out by the tube of rays on surfaces t = constant. Thus

2

o is constant along rays.

1
k.29 ST m<wp,:2- wp> a

By (4.22) this reduces to

M
4.30 - = constant along rays,
B
where
k.31 v = 0
& ok

is the group velocity.

Just as for the spatial rays of section 2 further consideration is required
when 6Z , the area cut out by the tube of rays on surfaces t = constant, goes to
zero. This can lead to an 'Airy phase' when the travel-time along rays to a parti-
cular location x,y has a (local) maximum or minimum. This is analogous to a smooth
caustic. The point source needs speclal attention and so does the high frequency
contribution since when w is very large all rays travel with almost the same speed

¢, the characteristic sound speed of the medium on the axis of the sound channel.

4.2 The excitation due to a point source

Just as in section 3.2 we shall assume that near the source the leading term in
(4.6) is excited by a point source to the ssme extent that it would be excited if the
medium had no horizontal or temporal variation. The method we use here is different
from that of section 3.2 and is an example of the use of canonical problems. This
method gives the leading term correctly but would fail for higher terms even if the

difficulty mentioned after (3.42) were absent.
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We shall solve an inner problem in order to find the behavior of ao near a
point source so as to have starting values for (L.25) or to determine the constant
in (k.30).

We consider

1

4, 32 -
¢“(0,0,2,0)

2 2 2 2.
3T¢ - ax¢ - 3Y¢ - aZ¢ = f(T)G(X)G(Y)G(Z—ZS) .
$=0,2=0;23,6=0,12= z*(0,0,0) .

The right member of (4.32) represents the source localized at (O,O,ZO) and with time
variation like £{T). We shell assume that £{T) is zero outside some interval

(0,T,) . Notice that c, Z' have been specialized by setting € = O in c(€X,€¥,%,eT) ,
Z+(sX,sY,eT) .

Iet us transform (4.32) by setting

h‘-33 gp(w,X,Y) = r aT r dZ(b(X,Y,Z,T)({;P(w,Z)e'in >

where as usual
I 2 w2 2
.3k W . =0
3 oy + (5= A= 0
$ =0, Z=0; azw =0,%2= z*(o,o,o) .

P P

Trans forming equation (4.32) we obtain

2 ~ Tl ~
4.35 - fw <¢p,(f§ - 3§)¢P>e—indT - ai@ - ai@ = f(m}G(X)G(Y)wP(ZS)

-0

which leads by way of {4.3k) to

2A 2A 2A _ ~
k.36 ax¢p + aY¢p + Ap¢p = - f(w)G(X)G(Y)wp(ZS) .
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Here f(w) is the Fourier transform of £{T) .

As in section 3.2
4. 37 o = - ime(w)y (2082 (2 R)
P p 870 D

which satisfies the outgoing rediation condition at R = ©» , where

1
4.38 R = (x2 + y2)2 .

Thus a good approximation to ¢ is

4.39 o(x,¥,2,7) = [ ¢ (X,¥,2,7) ,

P
where

i N (2) -iaT
L.uo ¢P(X,Y,Z,T) =-3 ffwf(w)wp(w,zs)ﬂo [Ap(w)R]wp(w,Z)e dw .
The outer expansion of this inner solution is obtained by setting
1
L, b1 R=r/e , r= (x2 + y2)2 , T=+t/e
and evalusting asymptoticelly for smell € . Thus
L.u2 o (x,7,2,8) = - = | 2w (.20 (0 z)H‘Q)(«A-EI:-)ei“’t/E aw
. D sY 52, - 2 . w D 1) D ) o) €

Using the leading term of the asymptotic serles for Hie) with large argument ([17])
we obtain
h'h3 ¢p(x’y’z’t) ~

27 Dptwr-u/tae)

=3 mé(w)wpw,zswpm,z)(%)Z . .
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But this integral is suitable for an epplication of the stationery phase approxima-

tion. Let w, = mo(r,t) be & value of & for which

L, 4k Bm[Ap(w)r - wt] =0.

W
o

Then, meking the usual spproximetions near w when only the leading term is required,

we set

.45 Ag(w)r-ut ~ A (w)r-ut + 1 aiAP(wo)r(m.wo)e

in the exponential but w = Wy in the other factors. This approximation yields

k.16 6 0ey,208) « = 5 70 (0,20 (u),2)
i e & [Ap{&o)r_motj/(ie}

xe (wlpiwoir) €

1.2 2,,.
Xr eEBMXP(wO)(w—wO) /(1E)dw

T
pi(1£1) 1 e
e T

A, () 1930 (g [ 12

~ A (w Jr-w t]/(ie)
% £lw (.20 (w,2)e P O ° .

where the upper or lover sign is to be used according as Bikp(wo) is positive or
negative.

Equation (L.46) is now suitable for comparison with (4.6) when x,y.,t are small.
However, we must meke one minor modification to (4.6): it should first be multiplied
by € . This change makes no difference to the analysis in the previous section and

we see that, a8 r + 0 , t = 0 in such a way that r/t is constant, we get
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34 (1£1)
eﬁ'

by Um rA_ = 2w, (w200 (u_,2) ,
0 ° [Ap(mo)laihp(wo)]]l/2 p o8 p 0
L.48 S8{x,y.t) Ap(mo)r-mnt ,

where w, is given in terms of r,t by {(4.4k). It is easily seen that in (4.30) 8% is
0(r2) as r + 0 when all rays issue from one point. Hence by (4.47) the constant in
(4.30) 1s well Qetermined as » + 0 .

The procedure by which the leading term is determined is as follows. Given the
point x,y,t and mode number p, find the space~time horizontal reys for mode p which
Jjoin (0,0,0) to {x,y,t) . For each such ray the value w, of w and the ratio r/t is
well determined as r + 0 and moreover these values are consistent with (h.l4) since
the rays are traced by points moving with the group velocity at each point. Start-
ing values of a  masy now be obtained from {4.47) for use in {(4.25) or {L.30) from
which a  may be calculated at each point on the ray and in particuler at (x,y,t) .

We note that when w is large Ap(w) frequently has the asymptotic behavior

L. ko kp{m} =nw+n +n ot O(ufl) .

1 2
Thus as t/r >+, W  of (4.4k) tends to infinity end Iaihp(wo)l + 0 so that the ap-

proximstion (L.46) is useless. We shall consider this situation in section h.kh.

L.3 The Airy phase
It frequently happens that in stratified media the group velocity has a minimum

for some value of the frequency ([1]). Let w, be this frequency and to(x,y) the arriv-
&l time st (x,y) corresponding to a disturbance from s point source at the origin
traveling with this minimum group velocity. Then for t < to and }t-tof small, there
are two space~time rays which arrive st (x,y,t) with slightly differing values of w.
When ¢ = to Just one ray arrives and when t > to no rays reach (x,y,t) . This phe-
nomenon mey be generalized for almost stratified medis and is the space-time analog

of a smooth caustic., For any given location x, y there may be a to(x,y) such that
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two rays join (0,0,0) to (x,y,t) if t < to(x,y) and none if t > to(x,y) . For t
near to(x,y) we need a more sophisticated ansatz than (4.6). The correct form is a

generalization of (3.1).

n

4,50 o{x,y,z,t) = eS(x,y,t)/iE ) (ie)U{Av(x,y,t)V[a—gb(x,y,t)]
v=0

[

2

+ iEEB\,(X.y,t)V'[s—3p(x.y,t)]} .

The calculation proceeds as before. Substituting into (L4L.5) and equating coefficients

of (ie)vV , (is)viel/av' separately to zero, we get first the eigenvalue problem

2

L.51 Bz

1,2, 2 2 2., _
A+ [02 (sy+ep ) - (V8)7 - p(Vp)"1a =0
where instead of (3.8) we have imposed

k.52 L ,s -Wevs=o0

: c2 t°t :

Ao satisfies the usual boundary conditions

A
4.53 A°=Oa.tz=0,-a?°-=0at z =2V (x,y,t) ,

similar equations hold for Bo . Thus as before we write
= P = P
L5 A aowp » By bowp .
The transport equations obtained from the v = 1 coefficients are
4,554 2f<y Lw >3,a , -Vs-Va ]+ [<p Lw >3 -st]a
p’c2 P to,t o p’c2 p tt ©

+ p[<lbp,-cl-5 ¢p>ott— (Vo)e]bo + [<wp,i—2 wp>o§ - ()23 b,
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+2pl<y A= u>p s - ()21b =0
p’c2 p to,t o *
k.55b o<y Ay >Sb .- USeWo ]+ [<p 2=y >8,, - ¥°8] b
p’,2 p tost ° p’ 2 'ptt °

l—- 2 L— . =
+ [<¢p,c2 ¥ Py, = (V0) Jay + 2E<¢p,02 U208, - VorVa =0 .

Just as at (3.13-3.17) it is found that on defining

+

- 2
4,56 § =8 % 3 o=,

)
i
©
[
+
°
o'
-

that az satlsfy the ordinary transport equation (L.24) and s the ordinary eikonal
equation (4.12), (4.9).

As we mentioned earlier this ansatz is suitable for the cese where two rays
reach some points (x,y,t) . For such points Si ere the values of S which would be
computed from (4,13) for the two rays, and p{x,y.t) = 0 defines the surface
t = to(x,y) separating the region reached by two rays from the region reached by no
rays.

The following method suggests itself for implementing the ansatz (4.50).

Iet us assume that we have at our disposal & computer ray tracing code and s method
of solving the ordinary transport equations. Then let S~ be the phase at (x,y,%)
corresponding to the ray which has not yet touched the caustic, let st be the phase

at (x,y,t) on the ray which has touched the caustic. Then define

4,57 2" +sT),

[+>]
i

2
[ 5" - ).

©
#

Let a; be the amplitude on the ray which has not touched the caustic calculated in

the usual way and let az be the amplitude on the other ray continued beyond the



121

caustic by means of (L4.30) where 8I is always taken to be positive. Then define

1
U R
4,58 a, =350 (a +a)
+
= L + -
bo =zP (ao - ao) 4

If the calculation is accuraste it will be found that &, » bo are finite as p > O
e
although a; both become infinite, and p itself is a smooth function tending to zero

as the field point epproaches the caustic. With these values of S, p , a_ , bo we

o
mey use the first term v = 0 in (4.50) to obtein an approximation valid right up to
the caustic.

This calculation depends upon the existence of two rays reaching the point
(x,y,t) and so it fails on the dark side of the caustic where no rays penetrate.
However, the required values of S, p in the neighborhood of the caustic but on the
dark side may be obtained by extrapolation from the bright side. Indeed, we never
need extrapolate far since the exponentially decreasing behavior of V(I) for negative
argument assures us that only small negative values of p are significant.

It is of interest to see how the ansatz {4.49) reduces to the originsl form

"2/3p) ,V' (€—2/3

(4.6) when p is not small. In this case we may approximate V(e p) using

the large negative argument epproximations to the Airy function ([18]) :

1 3 1
k.59 ve) = mi(g) = 2ot sin@ e Em) w0 ),
4 3
1 3 2
Vo) = - A (n) = 2t oG e e ) 2 0(e )

Thus by {(k.h49)
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z 3/2
k.60 o v es/ie{?}; £ p 4 aasin(%g + %‘-ﬂ)
11 p3/2
i 2 1
+-/—T_r_s p bocos(—3-g +En)} P

1 1 1
. 3/2, -9mi 3/2 i
o L eg es/ie{a; RUMAEN In . ot o107 e eh' W

&
2v/n ° P

1 1 1
W L Eg{a- S/ie e"ﬁ'“i+ o es*/ieel?ﬁ} v
avT o ° P
g
This agrees with (4.6) if we divide (4.59) by €° , multiply by ovF e X/*)™ 4ng

identify a; of (4.60) with & of (4.6), (4.10).

We see from (4.60) thet there 1s a phase shift of % in the signsl corresponding
to the ray which has touched the caustic relative to the signal for the direct ray
even affer allowance has been made for the differences in path length. Provided this
phase shift is incorporated it is possible to use the naive ray theory of (L.6) even
for rays which have grazed the caustic, provided the field point is not close to the
caustic. The ansatz (4.50), from which (4.59) was derived, provides a connection
formula for rays which greze the caustic.

Equation (4.39) also shows that the field away from the caustic is smaller by

/6

order of magnitude el then the field near the caustie. Or, looking at the phenom-

enon the other way, the field at the ceustic is amplified by a factor of order
s-(l/ﬁ) relative to the general field away from the caustic. Indeed, it is this in-
tensification which gives caustics their name. In the time dependent case the Airy
phase manifests itself as a large amplitude oscillation which terminates a dispersed
train of oscillations consisting of two superposed frequencies. The low frequency
component increases in frequency and the high frequency component decreases in fre-

quency until they terminate with a common frequency in the Airy phase which with its

large amplitude is often the most prominent feature on the record ([1]).
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4.4 The precursor and other phenomena requiring special treatment

As we mentioned at the end of section U.4 special consideration needs to be
given to the high frequency arrivals which propagate with speeds close to the char-
acteristic speed on the axis of the wave guide. For some velocity profiles (fairly
flat ones) this speed is approached from below as w + ® while for others (with deep
velocity minima on the axis) the velocity may approach ¢ from above as w+ ® ., In
either case the dispersion relastion typically has the asymptotic form

1

4,61 Xp(w) =nw+n +n w oo+ o(w_l)

1 2

It will be seen that when t/r is near ng in (4.44) the frequency w, will be large
and Bilp in (4.46) will be small so that the approximetion used there is not valid.
Moreover all modes have the same group velocity in this high frequency limit so that
rays corresponding to different modes tend to arrive simultaneously. But under these
conditions the parabolic equation method as developed by Tappert [19] is probably the
most useful method. This high frequency arrival is usually referred to as the water
wave ([1]).

If, with the advent of arrays of receivers which can separate individual modes,
& theory for the water wave carried by an individual mode is required, it may be pos-
sible to adapt the method of Zauderer [20]. If the time function £(T) in (k.32) is
replaced by 6(T) so that we are seeking a fundamental solution then the equation in

the x, ¥, 2, t variables is
1.2 2 -
L.62 c—2- %P - V9 - ::—2- 3 9=¢ 8(t) 8(x) 8(y) 8(z-z) .

Then Zauderer's prescription would suggest we set

4.63 o(x,y,2,t8) = ] A (x,¥,2,t) g,le,8(x,y,t)]
v=0

where

.6k g,(c:8) = e(es)V 2 5 (s/e)
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which should be compared with (3.28). Then

1 2
4,65 ;5'3v = (2v-3)g,_; - 8%,
%98, = Bey_;

which are similar to (3.29a) end (3.29b). On substituting (4.63) into (4.62) we
obtain the ususl eikonal eigenvalue problem
2

2
2 w _
4.66 BZAO + (:5 -k )Ao =0,

where w = - St ,» k = VS 80 that AO = aowp . The trensport equation for a, is

1 2 2 1 2
[<‘J)Pn:é' Wp>(S )ta'C) b - V(s )’VB.OJ + <le ac_z let>(S )tao

1 1 2 2,2 2 _
+ 2[<wp9 2 wp>(s )tt"‘v (S )]E'Q+ 3<wp13 wp>8‘° - O .

If ¢ 1s independent of t this may be put into the form
1 -2 2 -2 2

. < S - - =

k.67 3*9( wp,cz wp>s stao ) = V(s VSao) o,

which gives a finite value of &, at the source. Compare (3.37). Just as (4.26)

leads to (4.30) so (h.6L) leads to

82 1k
4.68 ~§—L=L ai = constant along & ray,
S vg

vhere k , 6Z , Ve have the seme significance as in (L4.30). Starting values for e,
near the origin may be obtained by solving an inner problem using the method of
Hendelsman and Bleistein [21] to evaluate (L.43) as t/r approsaches n_ of (4.,61). In
order to do this the constants in (4.61) must be known. We shall not pursue this

topic further.
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Another phenomenon requiring special treatment is cut-off. It frequently occurs
that in a perfectly stratified medium waves fail to progagate for |k| and w below
some finite nongero values ([1]). This is connected with what are often called ground
waves in ocean acoustics or head, or lateral, waves in other contexts. They corre-
spond to disturbances traveling in the substratum below the ocean and subsequently
being refracted back into the ocean at the critical angle. Values of |k| and w
smaller than their values at cut-off will correspond to modes which lesk energy into
the substratum and so are evanescent in the horizontal direction. The horizontal
ray theory has not been developed for modes traveling near cut-off and since all
modes typically have the same group velocity at cut-off it is doubtful if a normal
mode theory is adequate. Reference should be made to Cerveny and Revindra [22] for
an account of head waves in seismology.

This ends our discussion of the theoretical aspects of horizontal rays. In the
next two sections we illustrate the theory for time harmonic disturbances. In
Section 5 two idealized examples are considered and then in Section 6 we treat wave
propagation in a realistic ocean and compare the predictions of our theory with ob-

servational dats.

5. Two theoretical examples

5.1 Homogeneous medium, one free horizontal boundary, one rigid houndary with small

constant slope

As g first illustration of the asymptotic technique of Sections 2 and 3 let us
consider & model ocean in which the sound speed is constant, the surface Z = 0 is
free and the bottom is rigid with a small constant slope. Thus k2 of (2.1) is = con-

stant. The boundaries are

5.1

=
]
L]

o

7 (eX,eY) =

2t (ex,ev)

3
n

ey ,

which lead %o
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5.2 z=2 (x,5)=0,

s
z=Z2 (x,3) =% .
The boundary conditions are

5.3 ¢=0 on z2=20,

3 =
o 0 on z=y.
The operator L is given by
2 .2 2
5.4 L = + k%9 , k constant.

The eigenvelues and eigenfunctions of L are

2 _ .2 (p-1/2)%n°
5.5 32 =x? -
P 2
¥
and

5.6 lllp(x,y;z) =‘f(§-) sin[(E-lny)?rz]

Since AP is independent of x, the first ray equation (2.27a) may be integrated to

give

5.7 A, cos £ = A; .

where cos £ = dx/ds so that £ is the angle between the ray and the x axis. The con-

stant A; is given by

5.8 A; = AP(O,yS)cos ES .

where ES is the angle & at the source x =0 , y = Yg - On using the relation

ten £ = dy/dx we obtaln also
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¥ A2
PSS! < NSO
5.9 x f 512 W
(A%

2.0
8 -
PP )

Q

n
H

y'=y
[{y,2<k2_lge) ; (p_l/z}aﬂe}.l/e ]

2 o2
(k"-A") ¥'=yg

The phase 8 with initiel condition € = 0 is given by

2
A
= _
210 5= jy z e 12 V'
Yy OC-27)
PP
y'=y
- (32.)02)1/2 . (02.,02)1/2 ‘
= (p-1/2)m]| —= P_B ¥' pan~t _TIL_JL_Y__Ji_
K202 (p~1/2)7 p-1/2)n
P ¥'=vq

A quantity which we call the ray-bundle aperture will be used in the numerical scheme
which finds the amplitudes 8, - The ray~-bundle aperture is O where O 6£S/kp is the
cross-section of the tube of rays which leaves the source in directions between ES

and Es + GES . It is given by

|

gin £

J}\z R
P D

where the subscripts § and R stand for the source (O,ys) and receiver (x,y) respec-

5.11 lo|

2,2 02 2,02 R
AT (k" -2k"A
( p( ) ) Yy

(xz-x"‘?)\/xg G
P P D

o2
P

n
-
’dyl\)

]

B

S

8 R

tively.

Figures 1 through 3 show results for aparticular numerical example:

5.12 k

om ,

I, = 500,
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Figure 1. Eigenvalues A% versus distance Y from the shore for a
homogeneous megium bounded sbove by a horizontal free
surface and below by & rigid surface of constant slope
pased on {5.5).
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Figure 2. Horizontal rsy disgrams for medes 1 through 10
based on (5.9).
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It follows from (5.5) thet there are only ten propagating modes in the vicinity of
the source. Their eigenvalues Ag {p=1,...,10) are plotted as functions of Y in
figure 1. The resulting ray diagrams are plotted in figure 2. Notice that
each mode 1s turned away from the shore Y = 0 {where Z+ =% = 0) , and each mode
envelops & caustic curve. The caustics corresponding to these ten modes are plotted
in figure 3 and labeled with the corresponding mode numbers,

Points on the concave side of curve p but on the convex side of curve p + 1 will
receive two rays for each of modes 1,2,...,p and no rays for modes p+l,...,10.
Points very near curve p will receive a large amplitude for mode p . However, accord-
ing to (3.43) the amplitude of mode p excited by a point source at depth Zg will be
proportional to wp(O,YS;Zs) . Thus the depth of the source as well as the position

of the receiver will affect the amplitude of each mode.

5.2 Propsgation in deep water for which the sound speed increases with depth

There are bodles of deep water such as the Mediterranean Sea in February in
which the velocity of sound increases monotonieally with depth and varies slowly with

horizontal position. As & model for such a medium we teke k2 in the form
5.13 ke(x,y,z) = kg(x,Y) - ki(x,y)z .

In any real body of water the z coordinate will not have the full range

(O,ki/ki) but will be restricted to lie between 0 and Z+(x,y) , say, where z = Z+(x,y)
is the equation of the bottom and Z+ << ki/ki . We shall consider only the propage-
tion of modes trapped so near the surface that they are not affected by the bottom.
The bottom is usually an absorptive boundary so thet we may rationalize further by
supposing that if a mode does feel the effect of the bottom it will be so highly
attenuated that it will not propagate to any great horlzontal distance. Thus we shall
seek eigenfunctions wp(x,y,z) which ultimately decay as z increases. The eigenvalue
problem is now

2

5.1k g—g + P2y p=0,
2
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with
5.15 Yp=0 at z2=20
and
5.16 Y remains bounded.
If in (5.14) we set
5.17 g = -2 x, M3
we cbtain
Py
5.18 5 o= Cw .
1

Thus if we invoke (5.16) we find that
5.19 V= c M(z) ,

where Ai is the Alry function.

Equastion {5.15) implies that
5.20 Ai{-(ki—%z}/klh/33 =0.
Thus A may take on eny of the values Ap for which

2,2 I
5.21 - (ko-)\p)/kl /32 CP , the p-th zero of Ai ,

We note that 0 > Cl > C2 > ...

The normellzing constant ¢ of {5.19) may be easily verified to be

_ 13 r 2 -1/2
5.22 e =k AL” (glag .
Pt { z ]

P



133

On combining (5.19) with (5.22) we cbtain

=1 1/3
5.23 wp = ky [.ﬁj

-1/2
212 (c)dc] ai(r + lcl2/3 z) .
)

It is interesting that the constant ki has dropped out of the expression for wp .

Rewriting (5.21) we get

2 2 L/3
.2k = i
5 AP ko + kl cp
2 4/3 ‘ 2
Thus if ko and kl depend linearly upon y but not at all on x then so does Xp. In

this case the eikonal equation and the ray equation can be integrated exactly.

For example if

2 2 2
.2 AD = + v
5.25 o up o y
then
Y
= > /2 1/2
5.26 x = xgt 25 8% - ¥g )

b

where.xs, ¥y are the coordinates of the source,

2 1/2 2 2 1/2 2 2
.e7 § =t =— + - + ’
5 T l ¥ {(3u vy y) - ¥g (311p vy )

and the reay bundle aperture jig

2 2 2 2
/2 1/2 THtY, Y MotV ¥s
1/2 1/2 )
y Vg

5.28 o= ¥ Vg

The ray diagrams have the same character as those of the preceding example (figure 2.)
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6. Long range acoustic propagation in a deep ocean

In this section we show how the asymptotic theory of sections 2 and 3 may be
applied to a realistic ocean model. This is made possible by the existence of
measurements made during the last decade which give good quantitative information
about the variation of sound speed in the ocean, and by the availability of computers
which make the computations feasible. We begin by considering from a more practical
point of view the parameters which affect acoustic propegation in the (real) ocean.
Then we give a brief description of the computer program which implements our scheme.
Finally some results for e particular set of sound speed data are presented and these

are shown to compare well with observed acoustic amplitudes.

6.1 Environmentsal parsmeters

The most important paremeter affecting sound propagetion in the ocean is the
sound speed as & function of position. Empirical formulaes such as Leroy's [23]
{quoted below) indicate that sound speed increases with temperature, salinity, and

depth. Leroy's formula is as follows:

6.1 c=¢ +¢c +c +c +e
a ¢

[+ b d

where
(6.22) ¢, = 1493 + 3(1-10) - 6x107% (7-10)°

- 4x1072(7-18)% + 1.2 (s-35)

- 1073(1-18) (s-35) + 1073z/61
(6.2v) e, = 1071 22 + 2x1072(1-18)2 + 107%¢ ¢/90 ,
{6.2¢) ey = 2.6x107" T (1-5) (T-25) s
(6.2a) e, = - 1073 ¢% (c-h) (z-8) ,
(6.2e) eq * 1.5%x1073 (5-35)2(1-2)

+ 31078 12(1-30) (5-35) ,
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¢ is the sound speed in m/s

z is the depth in Km ,

S 1s the salinity in parts per thousand (by weight) ,
T is the tempersture in degrees centigrade ,

¢ is the lmtitude in degrees.

The last term in (6.2a) is a corrective term for low salinities, and should not be
used if 8 is greater than 30. BSince the dependence upon salinity iz slight end the
water at great depths is almost isothermal, there is a point below which the sound
speed increases almost linearly with depth (See figure 4 ). The layer immediately
above this deep isothermal region is called the mein thermocline but occasionally the
main. thermocline is absent, as in one of the idealized models of section 5.

If the water near the surface is well mixed a surface duct may be formed (see
figure % ) but acoustic energy traveling in such = duct tends to be scattered by sur-
face roughness and may not be significant at long renges.

Figure 5 shows the sound speed along & track in the Pacific Ocean running north-
ward from Hewaii to Alsske during the late summer of 1968. The change in depth of
the SOFAR axis, that is, the depth of minimum sound speed at u2° W, is where the
Kuroshio and the Oyashio currents meet. ZEven there the horizontal gradient of sound
speed is so small that the asymptotic technique will be applicable.

Up to now we have neglected absorption of energy but to meke predictions we must
consider the possibility of absorption both in the water itself and at the ocean
boundaries. There is currently some disagreement sbout which empiriecal absorption
formulas are the most accurate. Moreover, much of the relevant data is classified.
However, measurements taken by Adlington [24] indicate that the ocean surface acts
as & perfect reflector at frequencies below 1 kHz and for wind speeds below 20 knots.
Absorption at the ocean bottom, on the other hand, may be quite large. Figure 6
shows the bottom loss (ratioc of incident to reflected intensity in decibels) mea-

sured by Marsh [25,26] as a function of grazing angle. This refers to rays in a
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SURFACE DUCT
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Figure 4. A typical deep ocean velocity~depth profile. The
surface duct and deep disothermal layer are separated
by the main thermocline.
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vertical plane but & normal mode with no turning point can be associated in = natural
way with such rays end will have a definite grazing angle associated with it. We see
thet larger grazing sngles are associated with larger losses.

In the water itself the predominant absorption mechanisms are viscosity and
ionic relaxation of M’gSOLl . The most widely used formula for the attenuation coef-

ficient is due to Thorp [27]

2 2
6.3 o= f% £ 5+ —§9£—7§ .
148 4100+f

where f is frequency in kilohertz and O is the attenuation in decibels per kiloyard.

Although (6.3) is & good fit to measured data ([28]) above a few hundred hertz,
a second relaxation phenomenon introduces discrepancies at lower frequencies. The
equation

6.b u=5ﬂmqury2

dB/kyd ,
developed by Sussman, MacDonald and Kanabis [29] supplements the above results and
should be used below & transitional frequency of about 280 Hz .

It follows from all these data that if we limit the frequency to around 100 Hz
and wind speed to around 20 knots and consider horizontal ranges to beyond 105 yds.
(50 to 60 miles) then we mey essume that the ocean surface is free and we mey neglect

modes gssocisted with large grazing angles.

6.2 The computer program

The computer program which we have developed to implement our scheme consists
of two parts. The first determines the normalized eigenfunctions and eigenvalues at
each point of & rectangular grid in the horizontal plane. In the second part the
horizontal rey-tracing equations are integrated, and the contributions of individual
modes are combined to obtain the totasl field. The propagation loss along any desired
linear track in the horizontal plane may be displayed. Propagation loss is

-20 loglof¢/®01 where ¢ is the acoustic pressure at a receiver on the track and @o is
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the acoustic pressure 1 yd. away from the source. According to the law of reciproc-
ity, one may also think of the source as being situated on the horizontal track and
the receiver as being the origin of the horizontal rays.

The first part of the program requires as input the velocity-depth profile

zzd . czé L &= Zt.,z,...,ni‘j , &t each horizontal lattice point. The lattice points

13

are (xi,y } and for each 13 , cid is the sound speed at depth Z "

J
Temporarily dropping the superscripts ij we define

6.5 k, = —

6.6

and k%{z) is given by linear interpolation in the interval (zg, Zﬁ+l) as
2,y _ .2

6.7 x“(z) = kl + gz(z—zi) .

It was found convenient to treat the refracted-surface-reflected (RSR) and the
trapped (SOFAR) modes differently from the bottom-bounce (B) modes. Assuming that
the eigenfunction corresponding to an RSR or SOFAR mode decays exponentially with

depth in the deep isothermal layer z < z <z wve must have

n-1 n
6.8 ety (e) =m0 - e (e ) - 3D,

vwhere C is a normalization constant. If £ <n -1
-1 _ -2/3¢, 2 2
6.9 C wl(z) = dzAi{-gl [kz + gl(z-zz) - A°}

- 2
+ ezBi{-gke/3[k§ + gg(z—zl) N |
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and
-1 3y (2) -1/3 -2/3. 2 2
6.10 c — = dl g Ai’{_gk [kl + 32(2'22) - 13

+ eil/3 Bit {—g£2/3[ki + gy (z-z,) - 22D} .

The constants d£ > &, are determined successively by the continuity of ¥ and 3¢/5z
at z, . The eigenvalues are found by shooting for wx(O) = 0 . Onece the X are deter—
mined, Gaussian quadrature is used to compute the normalization constant C .

For the bottom-bounce modes we proceed from z = 0 by first setting

6.11 ¢ty (=0,
v, (2)
6.12 -,

successively evaluating the constants dz s &g for & = 1,2,...,n-1 and then adjusting

A so that

3, (z_)
-1 A n" _
6.13 c T—O.

However, it is more nearly correct to require

awl (z ) 2
6.1 = Ly Uy lz)) = ald®)

where a(Az) is determined from the empirical bottom-loss expressions. Since a(ke) is
1]
small the eigenvalues for the B modes are modified accordingly to Ame , where

1
sz )
2| =2 (*a’;/w“zn)) :

6.15 A = 25 + a(A
m m m B(Ae)

1
The advantage of thls procedure over that of computing Xm directly is that lengthy
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complex srithmetic may thus be avolded. The imeginery part of Am is the predominant
attenuation factor at long ranges and should not be neglected. On the other hand the
program does neglect the imaginary pert of the eigenfunction.

A significant reduction in computation could be achieved by using the Bohr-
Sommerfeld and WBK approximations for the eigenvalues and eigenfunctions. However in
this prototype of the program we have not used these.

After all horizontal lattice points have been treasted,control is transferred to
part two of the program where a family of horizontal rays is traced for each mode.

The fact that we are now allowing the eigenvalues to have non-zero imaginary
parts introduces an extra difficulty. Since only those modes which correspond to
eigenvalues with very small imaginary parts will propagate to large distances, we
assume that

2 2

6.16 AS =)

+ 1622
re im

where § is =& small parameter. On writing the phase function 8 in the form

_ 2
6.17 8=190,+ 166, + 0(s%)

and equating coefficients of 8° . 61 in the eikonal equation we obtain

2
re

)2 =2

6.18 (Ve
re

¥

_ 12
6.19 2 vere Veim = Aim .
In order to work with Afeydirectly rather than Are we introduce a new variable

s
6.20 u = [ A as',

vhere & 18 arc length. In terms of u the ray tracing equaetions become
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de Blie
6.21 -z = 1/2 .
du
2
2 )Y
6.22 g"‘%‘ = 1/2 ge )
du ¥
a8
re _ ,2
6.23 e Are N
as
im 2
6.2k Frle 1/2 Mm

These equations are integrated by a predictor-corrector method. Since values of

2
re

AD_ =nd Afm are required everywhere we interpolate to find the values of these quan-

tities between lattice points. Fitting Aie rather than Are gives more nearly correct

behavior near kz =0 .
re
Now let {xj} be & set of values of x , not necessarily coinciding with corre-

sponding coordinates of the lattice points. Whenever & ray crosses & line x = x‘1

the pertinent data are stored for future reference. The horizontal phase and ampli-
tude for s particular mode at an arbitrary point is obtained later by interpolating
between the stored data. The pressure amplitude is computed by summing over all

propagating modes.

6.3 Comparison of computed amplitudes with observational datsa

Two essumptions underlying the design of the computer program are that the speed
of sound in the ocean is known reasonsbly accurately and that the acoustic pressure
variations are due to a point source varying harmonicelly in time.

However, since amplitude, or equivalently proPagation loss data of the type in
which we are interested are in fact gathered over a period of several days, the
gound speed may change somewhat from its measured velues during the course of the
experiment. Furthermore, source levels must be high enough for the signal to be
detected at large ranges. This is usually accomplished by using a dynamite explosion
as source. The response st a particulasr frequency is then obtalned by passing the
received signal through a filter having finite bandwidth. In view of the above re-

marks we cennot expect predictions and calculations to be in exact agreement.



144

o - or -
V| 27°30'N o s 35°0'N 4
157* S0'W 157 50'W
o} i Al 1
S H
RN b -
£ 7 £
e a
4| r s 1
L d b sk B
A s | ¢ L . . ) L "
145 150 188 -0 0.0 o 45 1.50  L.88 .00 0.0 o
VELOCITY (KM/5) EIGEMFUNCTION VELOCITY (KM/S) EIGENFUNCTION
or - or W
s 30°0'N 4 s 7°30'N J
137°50'W 137°50'W
| ] | ]
EH -
zal - T3 —
£° zs
s &
o (-]
'S - ar -
5kF - 5 -
s L ) f . A - ¢ L
145 130 . 00 0.0 0 145 150 155 01 0.0 0
VELOCITY (KM/S) EIGENFUNCTION VELOCITY (KM/S) EIGENFUNCTION
[ [- - or -
2°30' N i L APUN <
T 130w ! e
2} ] 2k 1
H 2
Zaf . z3l 4
g’ £’
[ o
4 4 o 4
3+ + s '4
J [ 1 i — L i

& "
145 1.50 1.58

VELOCITY {KMm/S)

-0.¥ N 0.
EIGENFUNCTION

8
145 150 1.58
VELOCITY {KM/S)

0. 0.0 0.1
EIGENFUNCTION



145

or 1 0, 1
L 42°30'N I 50°0'N .
! 157°50'W W ! 157°50'W
2 b 2} E
£ g
3} e xal 4
g’ £’
o 2
4 F 1 4 E
sk h st 1
& 1 — L J b 1 3 L L
1.45 1.50 18 -0.1 0.0 0.1 1.48 1.50 1.58 ~0.1 0.0 [ A}
VELOCITY (KM/$) EIGENFUNCTION VELOCITY (KM/S) EIGENFUNCTION
0 - [] ’_ -
115 45°0'N H VB 52°30'N 4
1B7°50'W ureso'w
z} 4 2k i
i S J
= &
- -1 x -
£ i
3 8
4 E s 4
5| 1 5F 4
ry i — ¥ 1 s I 1 L "
145 150 L3S -0t 0.0 0. 145 S0 LS5 -00 0.0 0.1
VELOCITY (KM/S) EIGENFUNCTION VELOCITY (KM/S) EIGENFUNCTION

or .

) T 47°30°N ]

137°50'w

2 F 4
T Figure 7. Velocity-depth profiles (left)
xaf 4 and corresponding first four modes
§ (right) at various geographical

afF 4 locations for a frequency of

31 hz.
[ r— E
6!.‘5 I.‘!O I-JSS -(;J 0:0 .3}

VELOCITY (KM/S) EIGENFUNCTION



146

In the particular experiment to be analyzed, dynamite charges were detonated
500 feet below sea level along a track 1500 nauticel miles long, extending northward
from 27°30' N, 157°50' W to 52°30' N, 157°50' W. Eleven equidistant velocity-depth
profiles obtained from the measured data displayed in figure 5 were entered into the
computer program. They are shown on the left in each frame of figure 7. We see that
surface ducts were practically non-existent. Lack of relevant data prevented us from
ineluding any dependence of sound speed or bottom depth upon longitude.

The computer program was directed to determine 100 modes for each velocity-depth
profile using a frequency of 31 hz. The first four modes for each profile are illus-
trated on the right in each frame of figure 7. Note that the fundementsl modes are
centered about the SOFAR exis, which rises from a depth of 2608 ft. (795 meters) at
27°30' N to ‘about 164 feet (50 meters) at 52°30' N. On the average, for each pro-
file, 45 modes corresponded to RSR or SOFAR modes while the remaining 55 were B modes.
Figures 8 and 9 display propagation losses for receivers at depths of 2500 ft. and
10,800 ft. respectively, situated at 27°30' N, 157°50' W. The top graph in each
figure represents observational data while the middle graph shows computed results.
The measured dats and the computer predictions are superimposed in the bottom graph.
Peak values of measurements and predictions agree to within a few decibels along the
entire 1500 nautical miles of the track. The computer program did predict nulls of
about 10 db. in magnitude which were not found in the data. Such sharp minime, if
they really occurred, could be missed owing to the finite spacing of the source points,
or, fluctuations in the ocean and the receiving filter could smooth them out.

Figure 8 displays an interesting feature. The propagation loss decreases (i.e.
the amplitude increases) with increasing range beyond 42° N. This may be explained
by the fact that the 2500 ft. receiver is only 124 ft. away from the SOFAR axis and
the signal there is strongly affected by the amplitude of the few lowest modes. As
the source ship moved north the source approached the SOFAR axis causing the amplitude
of these modes to increase to such an extent that eventually the loss due to cylindri-
cel spreading was overcome and the total propagation loss decreased.

The 10,800 ft. receiver, on the other hand, is well below the turning points of

the first few modes and so the signal there is dominated by the higher modes. The
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FREQUENCY 31 HZ

SBURCE 500 FEET
RECEIVER 2500 FEET
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ety
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Propagation loss versus range for a receiver at a depth of

2500 ft., a source at 500 ft., and a frequency of 31 hz. The
receiver is fixed at 27°30' N, 157°50' W while the source

moves northward. The top, central, and lower curves represent
megsured data, computer predictions, and measurements superimposed
on predictions, respectively.
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amplitudes of these are not greatly affected when the source approaches the SOFAR
axis so that for this receiver cylindrical spreading dominates over the entire track.

We should remerk here that originelly our computations differed systematically
from the observed date by a few decibels. After thoroughly checking the calculation
and finding no error we were led to question the data. It turned out that as the
data were compiled the eguivalent source strength at 31 hz of the dynamite charges
had been systematically overestimated. When the original source strength was re-
placed by the most recent estimate available to us we obtained the good agreement
displayed in the, bottom graphs in figures 7 and 8.

A limited number of cases were also investigated where certain parameters were
varied to see what effect, if any, variations in surface loss, bottom loss, and at-
tenuation would have on the sbove results. It was found that bottom loss had no
detectable effect whatsoever, and that the results depended only weakly upon the
attenuation. Tt was also determined that if the ocean had had East-West gradients
in sound speed comparable with those in the North-South direction the radius of
curvature of the rays corresponding to the dominant modes would be no less than

2. % 105

nantical miles. This implies firstly that negligible error was committed
in neglecting the dependence on longitude, and secondly that in this particular prob-
lem the ray tracing procedure could have been replaced by the simple cylindrical

spreading law.



150

References

1] C. L. Pekeris, Theory of propagation of explosive sound in shallow water,
Geol. Soc. Amer. Mem. 27 (1948).

[2] J. L. Worzel and M. BEwing, Explosive sounds in shallow water, Geol. Soec.
Amer. Mem. 27 (1948).

[3] I. Tolstoy, Shallow water test of the theory of layered wave guides,
J. Acoust. Soc. fmer. 30 384 (1958).

. [4] A. D. Pierce, Extension of the method of normal modes to soynd propagstion
in an almost stratified medium, J. Acoust. Soc. Amer. 37 (1965).

{51 J. B. Keller, Surface waves on water of nonuniform depth, J. Fluid Mech. &
607 (1958).

[6] M. C. Shen and J. B. Keller, Ray method for nonlinear wave propagation in a
rotating fluid of varisble depth, Phys. Fluids 16 1565 (1973).

[73 B. Rulf, An asymptotic theory of guided waves, J. Engr. Math, 4 261 (1870).

[8] F. P. Bretherton, Propagation in slowly varying waveguides, Proec. Roy.

Soc. A302 555 (1968).

[9] J. B. Keller, R. M. Lewis and B. D. Seckler, Asymptotic solutions of some
diffraction problems, Comm. Pure Appl. Math. 9 207 (1956).

[10] F. C. Karal and J. B. Keller, Elastic wave propagation in homogeneous and
inhcmogeneous media, J. Acoust. Soc. Amer. 31 694 (1959).

[11] H. Weinberg and R. Burridge, Horizontal ray theory for ocean acoustics.
J. Acoust. Soc. Amer. 55 63 (197h).

{12] Dp. Ludwig, Uniform asymptotic expansions at & caustic, Comm. Pure Appl.
Math. 19 215 (1966).

[13] V. M, Babich, The short wave asymptotic form of the solution for the
problem of a point source in an inhomogeneous medium, Z. Vyeisl. Mat. i Mat.
Fiz 5 969 (1965).

[14] B. Zauderer, Uniform asymptotic solutions of the reduced wave equation, J.

Math. Anel. Appl. 30 157 {1970).



[15]

[16]

a7l

[18]

[19]

f20]

{a1]

[22]

(23]

[2k]

f25]

f26]

[27]

[28]

151

J. Hadamard, Lectures on Cauchy'’s Problem in Linear Partisl Differential
Equations, Dover Publicetions, New York, (1952).

P. R. Garsbedisn, Partial Differential Equations, Wiley, New York (196L},

p. 27.

W. Magnus and ¥. Oberhettinger, Formulas and Theorems for the Functions of
Methematical Physics, Chelsea, New York (1954) p. 22.

H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge
University Press (1956}, p. S51il.

F. Tappert, The parabolic equation method in underwater ascoustics, This
volume .

E. Zouderer, On a modification of Hadamard's method for obtaining fundamental
solutions for hyperbolic and parabolic equations, J. Inst. Math. Applics. 8

8 (1971).

R. A. Handelsman and N, Bleistein, Uniform asymptotic expansions of integrals
that arise in the analysis of precursors, Arch. Rat. Mech. Anal. 35 267 (1969).
VY. Cerveny and R. Ravindra, Theory of Seismic Head Waves, University of
Toronto Press (1971).

C. C. Leroy, Development of simple equations for accurate and more realistic
calculation of the speed of sound in sea water, J. Acoust. Soc. Amer. ﬁé

216 (1969).

R. H. Adlington, Acoustic reflection losses at the sea surface measured
with explosive sources, J. Acoust. Soc. Amer. 35 183k (1963).

H. W. Marsh, T. G. Bell, and C. W. Horton, Reflection and scattering of
sound by the sea bottom, in Proceedings of the 68th meeting of Acoust. Soc.
Amer. Oct. 21-2k, 196k, Austin, Texas (Jan. 1965).

R. J. Urick, Principles of Underwater Sound for Engineers (McGraw-Hill Book
Company, New York, 1967}, p. 118.

W. H. Thorp, Analytic description of the low-frequency sattenuation
coefficient, Letter to Editor, J. Acoust. Soc. Amer. 42 270 (1967).

W. H. Thorp, Deep ocean sound attenuation in the sub- and low-kilocycle-

per-second region, J. Acoust. Soc. Amer. 38 648 (1965).



152

[29] R. D. Sussman, R. D. MacDonald, and W. G. Kanabis, Prequency-attenustion

studies, Under-Water Sound Laboratory Tech. Memo. No. 911-16-65 (Oct. 1964).



CHAPTER IV

WAVE PROPAGATION IN A RANDOMLY INHOMOGENEOUS OCEAN

Werner Kohler George C. Papanicolaou
Virginie Polytechnic Institute Courant Institute of Mathematical Sciences
and State University New York University
Blacksbourg, VA 24061 251 Mercer Street

New York, NY 10012

0. Introduction

The purpose of this chapter is to present in a self-contained manner an asnalysis
of some phenomena sgssociated with random fluctuations of the sound speed of the ocean.

In section 1 we formulate the underwater sound problem in a manner convenient for
the stochastic analysis. We introduce several simplifying assumptions, such as the
forward scattering approximation, but we maintain radiation losses into the ocean
bottom. We employ & modal decomposition relative to the modes of the mean soundspeed
profile. The resulting set of stochastic equations for the mode amplitudes as functions
of range is the starting point of the stochastic analysis.

In section 2 we give a brief but self-contained desecription of the relevent
asymptotics for stochastic equations. The procedure described is nothing more than

gsecond order perturbation theory spplied properly. More information regarding sto-
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chastic problems can be found in [5-12]. References [8],[9] and [11] contain many
interesting examples and introduce the methodology systematically while keeping
mathematics at & formal level. More mathematical treatments are [12], [17] and [21].

In section 3 we apply the method outlined in section 2 to the underwater sound
problem. The result contains, in principle, the complete probabilistic characteriza-
tion of the complex~valued mode amplitudes in the relevant asymptotic limit. This
limit corresponds to propegation over distances that are large compared to the hori-
zontal correlation length of the soundspeed inhomogeneities, and to wesk fluctuations
in the soundspeed from its mean value. The wavelength is assumed to be of order one
relative to the correlation length.

Sections 4-8 contain concrete informetion about the underwater sound problem that
can be obtained by specializing the results of section 3.

In section b we derive the coupled power equstions. They control the dynamics
{as functions of range) of the mean power transfer between the trapped {(or propaga-
ting) modes and radiation losses. We feel, as does Marcuse [16], for example, for
the corresponding optical fiber problem, that the coupled power equations should be
an important tool in analyzing fluectuation phenomena. We illustrate this in section
5 where we take up the pulse spreading (in time) problem and show how to obtain
Personick's results [18,19] in the present context.

In section 6 we derive equations for the evolution with renge of the fluctua-—
tions in modal powers sbout their mean velues, These equations lead to some interest-
ing conclusions when the number of trapped modes is large. There are many interesting
problems in connection with power fluctuations that have not been analyzed yet. One
can find some conjectures in [16], for example. Of course, one can also study higher
moments and the statistics of relative phases of the mode amplitudes. The set up of
section 3 contains all this information but it is & major task {possibly numerical)
to extract it from there without additional simplifying assumptions.

In section T we indlcate very briefly how to calculate statigtics of depth de-

pendent quantities by superposing modes and using results of previous gections.



155

In section 8 we examine the form of the coupled power equations at high fregquency
i.e., when the number of propagating modes is large. We find that they are well ap-
proximated by & diffusion equation where range plays the role of time and ray angle
plays the role of space variable. Such diffusion equations have been obtained before
[23,24] by physical arguments that seem quite natural {cf. also [25],[26]). One can
alsoc give g derivation of these diffusion equations directly without first going to
the coupled power equations {we do not do this here), It would be interesting to ob-
tain comparable results for the coupled fluctuation equations. Numerical comparisons
show that the diffusion equation is & very good approximation to the coupled power
equations even when the number of propagating modes is not too large (say 10-20).

This is another reason why a diffusion approximetion for the coupled fluctuation equa-
tions would be very useful.

We wish to thenk L, Dozier for reading the manuscript and suggesting several im«
provements (cf. also [27] for some interesting results extending some of the asnalysis
given here).

1. The physical problem

let p(r,8,z) denote the sound pressure field in cylindriecal coordinates with z

measured downwerd from the surface of the ocean (figure 1) and with the time factor

e-ium omitted throughout. The pressure satisfies the following equation and boundary

conditions:
% . 18p,1 3%, 8" 2rp2
1.1 _%4. -—§P-+ —2-—%+ ——%+ ¥ {n(z)teulr,z)dp
s T e Bz
8(r)
= o (z-z_) ,

r>0, O0g<@8<a2m, 0gz<w®, pi{r,0,0) = 0 .

Here n{z) denotes the mean index of refrection, n{z) = co/c(z) where ¢{z) is the mean
velocity profile. This mean index of refraction is assumed to be a function of depth
only. The fluctuations about the mesn are dencted by ul{r,z); they are random and
they can vary with range and depth. We have assumed that the fluctuations do not

depend on the azimuthal angle in order to simplify the snalysis that follows. The
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genersal case entails no essential difficultles.
The parameter € in (1.1) charascterizes the size of the fluctuations and it is

typically small, € v 10-2. The fluctuations by definition have mean zero

1.2 <pu{r,z)> =0 ,

where <*> denctes ensemble sgversge or expectation velue. We glso assume that

p{r,z) = 0 for z sufficiently large, i.e., inside the ocean floor.

27
In view of the azimuthal symmetry, %F f p(r,8,z)d8 , also dencted by plr,z),
satisfies the simpler equation 0
1.3 22,1, 9%, 22 mentr,a) T = 25 6o )
: gp2 T 52 Mir,z)p = o LN

0<r<eo, 0<z<w», p(r,0)=0,

corresponding to (1.1).

Next, we introduce the assumption that the stochastic effects we seek to analyze
menifest themselves entirely within the cylindrically spreading regime. This means
that there is s region around the source location large enough so that the emitted
sphericel waves have reached their asymptotic cylindrically spreading state. At the
same time this region is small enough so that stochastic effects have not accumulated
and can be ignored. The precise amnalysis of matching the field of a point scurce to
the cylindrically spreading regime is given in [1] . We assume here that we may re-

place p by p/v/r; symbolically

1.h plr,z} ~ plr.z)

r

*

80 the new p is scaled by the geometrical spreading factor. Neglecting a near fleld

term of the form p/r5/2 the scaled pressure field satisfles
3% 3% . .82

1.5 =L+ =2+ k" [n“(z)+eulr,2)p = 0,
ar 9z
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r>0, z>0, p{r,0)=0.

In (1.5) the values of p are prescribed in some way at r = O by the matching-to-the-
source procedure. Since we shall also employ a forward scattering approximation we
postpone discussion of this until lsater.

Let us consider the differential operstor

Ll

+ kznz(z), z>0
2
dz

1.6 I =

zero boundary condition at z = 0.,

This operator is selfadjoint in L2(0,w) for & broad class of (normalized) indices of
refraction of the form shown in Tigure 2 ([3]). Its spectrum conteins finitely many
discrete eigenvalues and a semi-infinite line, the continuous or radiation spectrum.
We assume that the eigenvalues and eigenfunctions (the modes) satisfy the following

equations and normalization conditions.

= 2 = =
1.7 va(z) = 3pvP(z), vp(o) 0, P =1,2,...,NF
1.8 W(z,y) = wiz,y), v(0,) =0, -=<y<i
1.9 (vp,vq) = rvp(z)vq(z}dz = 6pq
0

1.10 (vp,v(v)) =0, (vY)viy')) = S{y=y") ,
whers,

1.11 vy = vp('), viy) = vi-,y)

and ve have assumed that the mode functions are real. Note that N = N(k) i.e., the

number of discrete or trapped modes depends on the wave number k = w/c0 and it
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increases as k increases., The eigenvalues BP = Bp(k) are the propsgation constants
of the trapped modes. The ocean is evidently a dispersive medium since modes travel
at different speeds cc[BSp{k)./Bk]'l .

let us expand the solution p(r,z) of (1.5) in terms of the eigenfunctions of L ,

2

N k
1.12 olr,2) = Pgl e, (+)v,(2) +f Yy )o(z,y)dy -

-0

On inserting this expression into (1.5) and using the orthonormality conditions (1.9),
{1.10), we obtain the following equations for the mode amplitudes cp(r) and e(y,r) .
e (r)
1.13 -—~9§—— + B2 (r) + ex® Z L {r)e {x)
iz PP 1 P8

2
2 K
+ €k f ﬁPY(r)c(Y,r)dY =0, P=1,2,...,N,

-0
2
a%ely,r)
1.1k 5

¥ yely,r) + ex® Z ﬂ r)c r)
4ar q=1

2 [&° 2
+ gk f ﬁYY,(r)c(y’,r)dx‘ =0, - <y <k

- . 4

In {1.13) and (1.14) we have dencted by {l with subscripts the matrix elements of

W(r) = u(r,»), the fluctuation function, with respect to the modes:

1.15 ﬂpq(r) = (u(r)vq,vp), ,ﬁpY(r) = (u(r)v(v),vp) R

qu(r) = (urivg,vly)), A, () = (ulr vy ),viy)) .

In the way these matrix elements are arranged in (1.15) they form a real symmetric
"matrix", the quotetion indicating that some entries in the matrix are continuously
indexed (the subscripts v and y' range over -« < y,y' < k2).

We shall assume in the following that the evanescent continuous modes v(y,z) ,
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-® <y < 0 can be neglected. This is a ressonable assumption because these waves do
not propagate energy over long distances. It is also an assumption compatible with
the forward scattering (or parabolic) spproximetion which we introduce next.

Let us write the mode amplitudes in the following form+

i r -if r
I S ? - P -
1.16 cp(r) = [cp(r)e + cp(r) 1, P=1,2,...,8

P

Ar

ely,) = b ey, et 4 Ty e T ) 0y
Y

+ +
The complex random functions c;(r) and ¢ (Y,r) are called the forward, with + , and
the backward, with - , propagation or mode amplitudes. This is consistent with the

assumed time factor e'iwt . Bince for each p = 1,2,...,N and for each 0 <Yy f_ke N

a pair of complex functions is introduced, we may prescribe one additional relstion

for the pair. We take these to be

ac’ (r) de_(r)
1.17 Bt B s B 2

+ -
ei»”?r de gx,ﬂ +e—iﬁr de {y,r) _ 0
dr dr
We insert next (1.16) into (1.13) and (1.1k4) and use (1.17). This way we ob-
+ +
tain coupled equations for ci(r) and ¢ (y,r) which involve only first order derive-
tives in r . We assume that c;(r) and ¢ (y,r) can be neglected in these equationms.

This constitutes the forwerd scattering approximation. Its justificetion in the con-

text of the stochastic problem rests mostly on the available evidence, experimental
and numerical {[4]). It is believed %o be very good for the underwater sound problem
within a broad range of freguencies. At the end of Section 3 we give a more precise
eriterion, in terms of the statisticel properies of the inhomogeneities and other

quantities, that determines the range of validity of this assumption.

+

The factors 6_1/2

D
will be symmetric.

/4

and Y"l are introduced in order that the coefficients in (1.19)
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With the forwerd scattering approximation, the equations for the forward prope-

gating complex mode amplitudes are as follows (the superscript + is omitted from now

on).
de_(r) N 1(8 -8 )r K2 1 (A-B_)r
JE <. q P P
1.18 = el qglupq(r)e cq(r) + el !) qu(r)e ely,r)ay ,
P = 1,2,...,0
X 1B -A)r
QES%?EL = gi Eluyq(r)e q cq(r) +
aq
X
+ei f uw.(r)ei(ﬁ"ﬁ)rc(y',r)d‘y' . 0 <y _<_k2 .
0
Here we have introduced the notation
2 k2
1. = .
19 upq(r) Vo ﬁpq(r), upy(r) R ﬁpY(r) ’
P a P
(r) = —E2 ) K
Hyrp(T) = 2"%-_' ﬁy.p(r), (r) = W f Y(r)

We must now assign initisl values st r = 0 for the system (1.18). This brings
us back to the remark following (1.5) nemely, that initial velues for the pressure
Tield {i.e. at zero range) must be obtained by matching the cylindrically spreading

wave to & spherical wave, We shall assume that this has been done ([1]) and that

s P=1l,...,8

1.20 e (0)=c¢
P PO

ely,0) = ¢ (y), 0O<y _<,k2

Where oo and cO(Y) are given complex numbers. These numbers characterize the nature
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of the source, i.e., the manner in which the source transfers energy into the trapped
and the radistion modes.

Tt is convenient to introduce matrix notation to represent the system (1.18).
We must allow, hovever, for discrete as well as continuous indices since

p=1,2,...,0 and 0 <y < k° . With this convention we write

rq Y
1.21 u(r) =

uy.q(r) uW,(r)

with the entries defined by (1.19). Prom our assumption u(r) is a real-valued sym-
metric random matrix. If we also introduce the discrete and continuously indexed

vector

1.22 e{r) =} e Zr) . 0<y §.k2

and the disgonsl matrix

2
1.23 B = dleg. (By,Byse e aByaee s Ayei) , 0 <Y 2K,
then we may write (1.18) in the compact form

1.24 dgrr) = eie-isru(r)eiBr elr) , r>0, c(0)s= e, -

T The random function u(r,z) in (1.1) will not be used in the sequel so the notation

will cause no confusion.
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Here u(r) acts as a matrix in the discrete indices and as an integral operator in the
continuous indices.

We shall refer to (1.24) as the coupled.mode equations. They constitute an in-

finite system of coupled stochastic equations in slowly varying form, i.e., with €
multiplying the terms on the right hand side. The matrix of linear operators on the
right side of (1.24) is random with mean zero,<u(r)> = 0 , in view of (1.2). 1In
addition u(r) is statistically stationary, & property that derives from the station—
erity of the fluctuetions u(r,z) as random functions of the range. We do not assume
stationarity in the depth variable. Since u(r) is real and symmetric it follows
from (1.24) that the total energy

2

N 2 (% 2
1.25 Z lcp(r)l + f le(y,r)|ay ,
p=l o

carried by the forward propagating trapped and radiation modes is conserved, i.e.,
it is independent of the range r .
In the next section we discuss the methods for analysis of the stochastic

equations (1.2%). These methods are then applied to (1.24) in Section 3.

2. Asymptotic snalysis of stochastic equations

We wish to analyze the behavior of the statistical properties of the solution
e{r) of (1.24), i.e., the statistics of the complex mode amplitudes as functions of
the range r, when € is small. In order to describe as simply as possible the essen-
tial points in the asymptotic analysis we shall restrict attention in this section

to finite-dimensional systems of the form

. ay (r) N (0)
.1 —L—dr =g qzl qu(r)yq(r) , >0, ¥y 0) = Yoo » P = 1,2,...,N
i(B -B )r
2. = qQ P
2 qu(r) ie upq(r) s

or, more compactly,
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2.3 §§§21-= eVirly(r), y(0) = ¥,
The matrix u{r) = (upg(r)) is assumed to have entries which are real, zero-mean, sta-
tionary random processes and to be symmetric. Note that (2.1) or (2.3) is & complex
system which we could write as a real system of twice the complex dimension N.

Again, for the purposes of this section we shall assume that (2.3) is a resl system
with V(r) a general real metrix valued process with zero-mean. We shall not assume
however thst V{r) is stationary since, in view of the exponential factors in (2.2},
it is not in the example of interest to us. The presence of the oscillatory expo-
nential factors plays an important role in the analysis that follows.

We are interested in the behavior of y(r) when € is small but r is large so that
cumulative fluctuation effects have had the opportunity to develop. Specifically,
we shall allow r to vary in the interval 0 < r < To/€2 where To is some finite number
which is arbitrary but fixed.+ It is in this renge that such  stochastlc effects
emerge. We shall describe at first the behavior of <y{+)>, the expectation of y{-).
This is no restriction in generality because (2.3) is generic in form. For example

N
SOy, = ] v ()8 Vo BV Py (=),

|'+6 [ 3PS |
0,q'=1 P2 ®'a' "pap'a a Ve
which is sgein an equation of the form (2.3) for the doubly indexed vector
yp(r)yp,(r), p,p' = 1,2,...,8N. Leter on we shall describe how one can obtain the
behavior of the full probability distribution of y{+*) , which is our main objective
here.

Iet us rewrite {2.3) in integrated form

r
2.4 ylr) = v, € J Vis)y(s)ds .
¢}

¥ Frequently the resulis below hold with To= ® ., Then the assumption ToS® represents

no essential loss iIn generality, and it is not necessary to specify T, numerically.
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Upon iterating this equation once we obtain

r o [T
2.5 y(r}) = Yo+ € j V(s)yods +€ j V(s )V(o)y(o)dods .
o}

0

O Sy
w0

We now take ensemble averages in (2.5) and use the hypothesis <V{r)> = 0.
This yields

r 8
2.6 x> =y, + e? f f <V(s)V(0)y(o)>dods ,
4]

0

which appears to pose a "closure" problem since higher moments enter. Under certain

hypotheses on V(r), which we explain below, one can show that

2 r (S 3 2
2.7 ylr)> =y +e f f <V(s)V(0)><y(o)>aods + 0(e”) , 0 <r < T /e° .
00

On dropping the O(€3) on the right side of (2.7) one obtains the first order smooth~

ing approximation to <y(r)> ([5-9]) which we shall continue to denote by <y(r)>.
In order to arrive at results that are sufficiently simple and useful one must
continue beyond the smoothing approximation. First we rewrite (2.7) in differential

form

r
2.8 Qf%é{li =¢? j <V(r)v(s)><y(s)>as, <y(0)> =y , 0<r :_Tofﬁa .
' 2

Now we apply the long-time-Markovian spproximation to (2.8) which means that we pull

<y(s)> outside the integral in (2.8), evaluate it at s = r and extend the integration
to infinity. However, because of oscillatory factors as in (2.2) the integral to
infinity will not exist and it must be replaced by

r +T
]

Q
2.9 V= 1im -lT-j f <V(s)V(g)>d0ds .
Thoo
r
o] [=]

The long-time-Markovian approximation ¥{r) of <y(r)> is thus given by solving
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2.10 Qi-‘%)d V5@, F0) =y

]

We assume that the limit (2.9) exists and is independent of r > 0.

We shall employ here exclusively the approximation (2.10) because it yields re-
sults in their simplest and most useful form and because in the context considered
here, the advantages that (2.8) mey have over (2.10) are neutralized by its complex-
1ty.

let us restate directly the connection between (2.3) and the approximation (2.10)
as a formal asymptotic limit. Let

2.11 1 =%, y¥(1) = yl/ed) .

Here T is the scaled range relative to the size of the fluctuations and yE(T) is the
vector of mode amplitudes as functions of scaled ranges (with radiation neglected for
simplicity in this section). We have that, as € >0, 0 < 1 2T <y€(T)> tends to

v(1) where

2.12 (o) | v y(1),

ar Y(O) = Yo s

with V defined by (2.9).

In the form (2.12) given here the above asymptotic limit can be given a rather
complete mathematical treatment; see [10] and references to other work there as
well as Stratonovich [11] and Khesminskii [12]. In fact, one can show that the error
in the epproximation y(T) is 0(e) , uniformly in 0 < T < T, (To < ® but arbitrary).
The condition on V(r) that we mentioned was needed essentlally to allow the transi-
tion from (2.6) to (2.7); it is called the mixing condition; we shall not give its
technical meaning here ([10]). Physically, it means that the fluctuations W(r,z)
and u(r+s,z') at two points separated in range by s tend to become statistically
independent, in a sufficiently strong sense, as 8 becomes larger and larger. This

is a perfectly acceptable assumption for the underwater sound propagation problem.
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We show now how one can obtain the full statistical description of y{(r) in the
asymptotic limit corresponding to (2.12). As we describe in [10] , for exsmple,
the process y(s)(r) , defined by (2.11), converges as € -+ 0 to a Markov process
y(O)(T) » 05TX To s B0 that it suffices to find the Fokker-~Planck differential
operstor for the limiting process y(O)(T) . Let us outline how the derivation of
the Fokker-Planck equation follows the pattern (2.3) + (2.10) or (2.12).

Let f(y) be a smooth function of N real variables y = (yl,ya,...,yN) . Let us
solve (2.3) in the Interval {[s,r], 0<s <r, withy(s) = ¥, given and let us denote

. N
the solution by y(r,s;y ) . Define y(r,ssyo) by
v
2.13 y(r,s;yo) = f(y(r,s;yo)) .

By elementary computation we find that

Y

Iy (r,siy,) | 5
R —— e v — N-H =0
2.1k 28 p,£=l Pq(s)yoq Byop y(r,s yo) ’

N
s <r, ylr,rsy ) = £ly,) -

Thus, (2.14) is formally egain a problem of the same form as (2.3). Now however the
independent variable is s and it runs backwards and the operator corresponding to V
of (2.3) is a differential operator. Suffice it to say that this formal correspon-
dence of objects can be carried all the way to obbain the asymptotics corresponding
to (2.8), (2.10) or (2.12); see [6, 8, 11]

Iet us now give the form of the Fokker-Planck operator corresponding to the
limiting Markov process y{o}(T) and whose derivation follows the lines just sketched.

(0) (9) o)

(t) given y =¥,

Let P(T,y;yo) denote the transition probability density of y o

il.e.,

P(T,y3y,)ay = riy® N eay | v 00 = vt -
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Then, P(T,y;yo} satisfies the equation

3P(T,Y;Y°) N 52 N

3
2.15 —_—= ) = (& Yy .P)- I 5=—(v_yP)
a 1at ' a 3
T p,a.p',a'=1¥pPpr  PLP'ATAG p.g=1 ¥p PUA

T>0 ’ P(Oanyo) = 6(Y':YO) .
The diffusion coefficients apq p'a’ and the drift coefficilents bpq are given by
L]

t +T
IR AN
2.16 8 = lim & <v_ (o 8 )>dods
PLP'Q e T pg " p'a ’
[} 1:0
. Ty
b= 1lim = <V o)v s )>dods .
pq T+wa [ q,Zl a'q(@Vpq ()
t t
o o

These limits are assumed to exlist independently of t0 , which is the case if qu(r)
is given by & formula such as (2.2) with (upq(r)) a stationary process.

In the following section we also employ the adloint of the Fokker-Planck equa-
tion called the backward Kolmogorov eguastion for the Markov process y(e)(T) . If

f(y) is a smooth function and if y(O)(

0) = ¥, then

211 ulnyy) = <) = [elryw )ty

satisfies the equation
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Bu(t,y,) N Pulty) N dult,y.)

2.18 = 8 o 4 —_

ot ¢ voq Ppasp'a'Yod’eq! By dy Ppgfoq oy :
P.2,p',q'=1 ? op “op' p,a=1 op

T>0, w0,y ) = £(y ) .

The differential cperator on the right hand side of (2.18) is called the infinitesi-
mal generator of the Markov process y(o)(T).

We restate once again the approximation result we shall be using. ILet y{(T) be
the process defined by (2.3) and let y(s)(T) be defined by (2.11). Then for any

smooth function f{y) we have that

2.19 <y &)y — <t(y(®)(2))> = ultyy ), 0XT<T
o - =0
e+0
where u(r,yo) satisfies (2.18) and the error in the approximation is 0(e).
To obtain the asymptotic behavior of averages of y(e)(r) at the different scaled
ranges, T, and T, say, e use the Markov property of the limit process y(c}(r) . The
joint probability density of y(o)(Tl) and y(o)(rz) » 02T £ 7,5, is given by the

product
P(Tz—rl,yz;yl)P(Tl,yl;yo) .

so that if we know the solution P(T,y;yo) of (2.1%) we can compute the approximations
to averages of 2-range quantities.

Faturally solving {2.15) will turn out to be a very difficult problem. There
is however s surprising emount of information one can obtain without solving the full
equation. We should slso remark that since the presently available mathematical
theory referred to sbove is not sufficient for our problem (1.24), the above results

will be epplied formelly in the following section.



170

3. Application of asymptotic methods to coupled mode equstions

In this section we shall apply the asymptotic method described in the previous
section to the system (1.24). "he finite-dimensional vector y{r) of Section 2 must
nov be replaced by the vector c(r) of {1.22) which includes the continuously indexed
radiation mode amplitudes. TIn addition, we must allow for the fact that c{r) is
complex-valued. For this purpose we consider jointly the vector c{r) end its con-
Jugate c*(r) which satisfies the complex conjugete of (1.24). Recall that the matrix
pu(r) is real and symmetric. Tt is more convenient to deal with c(r) and c*(r) rather
than their real and imaginary parts.

Instead of writing the answer directly by applying, with sppropriate modifica-
tion, the formulas of the last section we shall proceed in & manner that exposes
again the ideas in the derivation. The first step consists in obtaining here the
analog of (2,14). Let c(r,s;co) denote the solution of {1,2h) with & < r and initial
condition c(s,s;co) =c , and let c*{r,s;c;) denote its complex conjugate which
satisfies the complex conjugste of (1.24). If ¢ = x + iy{i = /~I) is a complex vari-
able we define, as usual, complex derivatives as follows.

3.1
Let f(c,c*) be & smooth, real-valued function of its arguments and consider

3.2 ulr,sse_,c¥) = flelr,sse ), c*{r,s;c¥)) .

o]

It is easily verified that u satisfies the following analog of (2.14).

Bu(r,s;co,cg)
3.3 — e * eV(s)u(r,s;co,cg) =0, s<r,

u(r,r;c ,cg) = f(co,c:) .

[¢]
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Here V(s) is the differential operator given by

N i(B -8 }s
3.4 vis)=4i 7} uooe ap e, gg——
pya=l % “Cop
) fkg 1o VB () 2
+1 ayy_ (s)e e ()
p=1 1 DY o Bcop
2 .
g K 1(Bp—f7)s 5
+ i o f dqup(s)e op EE;T?T
0
ka ke i(J;‘-J?)S §
1 T
+1 j j ayay uYY'(S}e e iy g;:r;y
¢ 0

+ C.Ch .

Here we have used the sbbreviation c.c. to stand for complex conjugate of the pre-
ceding expression in the sum and we have denoted by 6/6c0(y) the variationsl deriva-
tive. The elementary formal calculus of variational derivatives will be employed
without speciel comment in the sequel ([13]). 1In particular, complex variational
derivatives are defined in the same way as (3.1).

We continue now with the asymptotic analysis of (3.3). According to the outline

given in Section 2 we first rescale the problem using
2
3.5 g=g8, T=€r ,

to dencte the scaled initiel and final ranges respectively, and define the scaled

complex mode ampliitudes snd u of (3.2) as a function of these scaled variables by

3.6 c(s)(T,U;cD) = O(T/EZ,G/EE;CO)

£ 2 _, 2
u(t,05¢ ,c8) = ult/e”,0/e segack)
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Then, as € + 0 , <u€(T,d;co,cg)> tends to the function E(T-U,co,cg) which depends on

T-0 only and satisfies the backward Kolmogorov equation

wlor
dlcl
i
<
£1
"

3.7 T>0, E(O,co,cg) = flc ,c*)

o°Q

The infinitesimal generstor 7 is given by the formula

r +T
o

-1
3.8 V= 1lin= <V(o)V(s)>dods |,
T
Theo
r
< o

corresponding to {2.9) and with V(s) given by (3.4).

In order to find the explicit form of the infinitesimal generator V of the 1limit
Markov process c(o)(T;co,c;) , to which the process c(e)(r;co,cg) converges, we must
insert (3.4) into (3.8) and perform the indicated ensemble averages and integration.
This calculation is straightforward but lengthy so we shall omit it and write the
result directly. To simplify the notation we shall drop the subscript o from e, and

cg . We find that

T=- a P 9
3.9 v - =;§ » r<upq(c)up,q,(o)>e at ey Bcp (cq, 50—
P a4 q p 0
1(R -B_)t 32
+ ) r<u (thu, ,(0)>e % P at} cec
-8 =f - pg "p'q’ a4 qQ' dc_oc*,
Bp Bq Bp' Bq' 0
2
-1 f ay <u (th_(0)>e ¢ at e =
g =g Ya q 3CP
P a0 0
K2 -1(8 -A)t
+ ] f f ayay" r(p (thu  (0)>e ¢ at
8 =8 Ya Yp
p g0 0 0

2
$
- - *
Ay—y? )cqcP —T—-)———Z-—HC Y% (y + C.C.
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Here the summations extend over all indices for which the indicated equalities

hold, c.c. stands again for the complex conjugate of the first part of the operator
V and A(y) is defined as identicelly equal to zero for Yy # O and equal to one at

Yy = 0. From this definition of A{y) it follows that the term with the second func-
tional derivetive in (3.9) will be zero unless a delta function 8(y-y') appears from
the differentiation.

We note that in the derivation of (3.9) we have employed the symmetry of the
random matrix u(r) with elements given in (1.19) and we have also employed the hy-
pothesis stated below (1.2) that the random fluctuations of the refractive index
u{r,z) vanish for sufficiently large z.

The operator V of {3.9) has the following important property. If f(c,c*) is a
function of the discrete components cl’c2""’cN’c§’°§""’c§ only, then Vf{c,c*)
is also & function of cl,cz,...,cn,ci,cg,...,c§ only. This means that in the asymp-
totic limit under consideration the statistical properties of the propagating trapped
mode amplitudes can be described independently of those of the radistion mode ampli-
tudes. This decoupling of the propagating trapped modes from the radiation modes is
a direct consequence of the assumption that the refractive index fluctuations u(r,z)
vanish for large z . The physical meaning of this decoupling is clear under this
hypothesis because it is impossible for the inhomogeneities to cause energy transfer
from the radiation modes into the trapped modes. Of course, energy can escape out
of the trapped modes into the radiation modes and so get lost into the bottom of the
ocean. This effect is due to the third term in the Gefinition {3.9) of V.

Because of the importance of the decoupling we restate the results of the asymp-
totic analysis again as follows. Let cég)(f) = (cﬁe)(T),...,cée)(T)) be the complex—
valued, random, trapped-mode amplitudesfat scaled range T, as in (3.5), (3.6) and with
(c§€)(0),cé€)(0),...,céE)(O)) = (col,cog,...,coN) given, nonrandom, initisl mode
amplitudes at renge zero. Then, as € + O and the scaled range stays finite, the
stochastic process cée)(T) = (C§E)(T),cée)(1),...,cée)(r)) converges to the diffu-

sion Markov process cT(T) = (cl(T)‘CQ(T)’°"’cN(T)) with values in C (the complex

T Tne subscript T stands for "trapped”.
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N-dimensionsl space) whose Fokker-Planck operator 3% is the formal adjoint of 7 given

by (3.9) with the fourth sum (the varietional derivatives) omitted. Let P(T,cl,...,

* * . * *
cN’cl""’cN’col""’coN’col""’c oN) denote the transition probability density of

(cl(T),...,cN(T)) , i.e., the solution of the Fokker-Planck equation

3.10 %$-= —§ P, P(O,c,c*;co,cg) = G(c-co)ﬁ(c*-c:)

with V% defined as above and c = (cl,c ,...,cN) , etc. Then, as we mentioned at the
end of Section 2, all statistical properties of (ci{f},...,c?(f}) can be obtained in
the limit € + 0 from the solution P of (3.10).

In order to study further the statistical properties of c¢(T) , the limiting
mode amplitudes (with or without the radiation modes), we introduce the simplifying

assumption of nondegenerscy of the modes as follows.

3.11 The propagation constants Bl""’BN are distinect

along with their sums and differences.

Let us note that this assumption is violeted when azimuthal fluctuastions are present,
i.e., u = u(r,z,8) . However, the results below can be recovered if we assume that
the fluctuations are statistleally rotationally invariant about the vertical axis at
the source; see ([14]) for some comparable results. Thus, (3.11) is not ass strin-
gent as it mey appear and we proceed to utilize it next.

In the nondegenerate case (3.11) the infinitesimal generator V of the limit
Markov process c(T) (with radistion modes included), given by (3.9), simplifies after

some rearrangements to the following form

— l -~
.12 7= Lo (A A¥ + A% A A_A% +ia_ (A -A
3 l<£<p<N { 2pa{Apq"pa * pq pq) T }

N =
©o

2
N Nk R 5w . d

[ ooppiorin ) L By® o * PoySp o¥
=1 =l b2 P
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2 &2 2 - 52

N ok ok IS
8
1 oyt * *
" [ [ wevsternesy |5, smmimm® Sty s
0

o

Here
- - - I
3.13 qu = cp Se cq ac; qu
and
.1k = F< t a)> -8 ¥ @
3 ®q upq( )qu( ) cos(ﬁp Sq) t
= < Oj> i -
&g rupq(t)upq( ) sm(Bp Bq)t at
0
3.15 P =r<u (t)u_ (0)> at
Pq PP qq
1 = < t > & =],. 00,8
3.16 bpYr uPY( )uPY c)e t P,a%1L,.. .,
0

The infinitesimal generator for cT(T) s the traspped mode amplitude limit process, is

given by

3.17 v, = lo (A _A* + A% A )+ a A A* +ia_ (A -A )
T l§£<p_<_N le Pa P2 PA  PaPQ  PY PP Qq paqa pp

~ 3 2 3
—— $o¥ e——
! bpcp Bcp* p°p Bc ]

i e i
o=l ®ppiop’Ep pe1

+
S =
L
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where
-~ KA
3.18 b=}bdy.
0

Thus, the process ¢ (T) , T > 0 1s a diffusion Markov process with state space o .

T
the complex N-dimensional space. Note that the coefficients (3.1h), (3.15) are power
spectra of the matrix elements of the fluctuation process u(r,z) .

In Sections 4 - 8 we study in detmil properties of the process cT(T); second
moments, fourth moments, its behavior as N 4+ = ete. All results herein follow from
the form (3.17) of the infinitesimal generstor. In Section 5 we discuss some simple
generalizations to mccount for slow modulation effects not incorporated into (3.17).
No essential changes are made there however.

In the remainder of this section we shall use the full operator (3.17) to show

that when radiation is present the energy of the waves decreases to zero as the

scaled range T incresses to infinity.

Assume that
3.19 0<&8= min (b_+ b¥)
L<p<m P
and let
it
[e]? = I c e
p=1 PP

Then, it can be readily verified from (3.17) that

3.20 Tolel? < -[el? .

The statement of the result is now this., For any € > 0 and any starting value c{0}),

say,
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3.21 P{}cT(r)i2 < (IcT(o)[2+e}e“‘5T, for all T > 0} > £ 5
[cT(G}I +E

-

Thus, for |c(0)]| sufficiently small, the probability that Ic(T)|2 will decay expo-
nentially fast as T + « can be made arbitrarily close to one.

Restated in more physical terms, we have that because of radistion losses the
energy carried by the trapped modes will decay exponentially with range with prob-
ebility as close to one as desired.

The demonstretion of (3.21) requires some facts sbout stochastic differential
equations and cen be found in [15, p.325].

The velidity of the forward scettering approximation, which we have adopted, can
be assessed on the basis of the results of this section (and the previous one) spplied

to the full system of mode amplitudes et and o . Tt is necessary that

3.22 r <upq(t)upq(0)> cos(Bp+Bq)t a , 1,051,000, ,

-

be negligibly small compared to ®oq of (3.1h4) along with similar relations for coup-
1ing to rediation. This is & useful condition for checking the validity of the for-

ward scattering spproximation in the stochastic context.

4.,  Coupled power equations

In Section 3 it wes shown that the limiting Markov process ¢{T) has a transition
probability density satisfying (3.10). Once this density function p is knowm, a
complete statistical description of the limiting behavior, as € ¥ 0, of the mode
amplitudes ce(r) is availeble.

Tn this section (and in section 6) we shall obtain information about cT(‘r)“{w
without sctually solving for p. This is possible because V. defined by (3.17) hes

T
the following special property. The coefficients of the second derivatives are

ki Informetion ebout c¢(T) not contained in cT(T) , the trapped mode amplitudes, can
be obtained by using the conservation relation (1.25).
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homogeneous of degree 2 and the coefficients of the first derivatives are homogeneous

of degree 1, Thus, we can obtain closed equations for moments of c_(t). Since we

T
shall work exclusively with the trapped modes, we shall drop the subscript T from
now on.

Let

4,1 W (1)

f crc: P(T,c,c“;co,cg)dcdc*

= lim <|c§(t)|2> , T>0, r=l,2,...,N.
{0
Using the equation
4.2 B _Fep

aT

and the form (3.17) of V we obtain after an elementary computation the coupled power

equetions:
dWr(‘r) N

4.3 = = -b W (1) + pzl (arpwp-aprwr) , T >0
W(0)=le |2, r=1,2,....8
r or ] Lk LA | .

Here % is as in (3.14)

. = t - s 581,00, ,N
L.y 8oq r <upq( )upq(0)> cos(Bp Bq)t at P»q=1 N

-0

and bp is given by

00

2
k ~ k
4.5 bp = 2 Re l! bdeyl =f ay r dt<uPY(r)uPY(o)> cos(ap-/f) s DP=l,...,N.
0
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We note that the energy transport coefficients apq are nonnegative, being power
spectra, and symmetric and the radiation loss coefficlents bp are nonnegative, being
integrals of power spectral functions.

If the smallest radietion loss coefficient is positive, then the solution of

(4.3) tends to zero as T + ® . This i3 elementary; in fact we have

L ] ) )
= w(t)=- b W (t) < -min b w_(1)
O =y T r=1 TF PPyt
from which an exponential decay is obtained.

On the other hand if bp =0, p=1,2,...,N then, Wr('” tends to equipartition as

T4o

» r=1,2,...,N.

Here we must use the symmetry of the coefficients apq which goes back Lo the symmetry
of .
uPQ
To obtain the mode amplitude correlations at the different scaled ranges, we

use the Markov property of the limit process c(t) . Thus, if

_ £ e*
4.6 wrs(rm ,T) = :jxg <e_(t+ale, (1)>

A oo # " "o
= IJ crch(U,c,cfc,c )P(T,c,c*,co,cg)dcdc*dcdc* .

we find from (4.2) and (3.17) that (setting r=s for simplicity)
N 1 ~ ~
4.7 W (140,1) = W(T) exp |- pgl z a,rp+iarp)+br g

~

where bp 1s defined by (3.16) and (3.18) and S defined by (3.14). In

(4.7) W (1) are obtained by solving (4.3).
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The coupled power equations (4.3) constitute 2 basic tool in studying energy
transport in the oceanT. The reason is simply that equations (4.3) are
(1) relatively easy to solve end make sense intuitively,
(i1) depend on relatively few physical parameters,
(iii) yield information about guantities of direct physical interest: average
mode powers
In implementing (4.3) one must decide what the coefficients 8oq and 'bp are. If N is
not too big (N<10, say) i.e., at low frequency, the coefficients may be gstimated
from data. Although (L4.3) are valid only asymptotically (cf.(%.1)), they are ex-
pected to give reasonable results under very general circumstances. Therefore the
data used for the estimation need not be very deeply inside the theoretical reglon
of validity of the asymptotics. Of course one may attempt to derive formulas for
the coefficients apq and bp by constructing theories for the fluctuation process u
in (1.1).
If N is large but the coefficients apq are negligibly small if ]p—q|>l, then
(4.3) can be approximated by & diffusion equation which again mekes good physical
sense and depends on an optimelly small number of physical parameters. We consider

this case in detail in section 8.

5. Quasi-static and slowly-varying coupled power equations

In this section we shall discuss the coupled power equations (4.3) in some de-
teil. We shall introduce time dependence into (%.3) in a phenomenological manner and
we shall study various limiting forms of the resulting equations.

It is clear that the coefficients 8oq and bp defined by (L4.4) and (4.5) need
not be constants. They can be functions of the scaled range T i.e., they can be
slowly varying functions of the range. The coupled power equation (4.3) are valid
as they stand with T-dependent coefficients.

We note that the average mode povers WP(T) p=1l,...,N, are functions of the

¥ They have been used very effectively in fiber optics by Marcuse [16].
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scaled range only. Let vb be the group velocity of the pth

38 (k)]
U i N
5.1 vp = co { e ] .

We shall assume that the average mode powers as functions of time and scaled range,

mode {cf. below (1.11))

Wf(t’T) , satisfy the equations

awp{t,r)
3T

N awp(t,r) N
+ L. = Wo-a W) -bW .
v, % Z (apaa = 2pap) = Bp¥y

5.2

This is & resasonsble extension of (L.3) and can be derived from first principles but
we ghall not 4o so here.

Equations {5.2) must be supplemented by initiel and boundary conditions. Be-
ceuse of the nature of the approximetions that led to (5.2) it is natural to suppose

that t €(-=,@) and T > 0 so that
5.3 WP(t,O) =Wpo(t) s P=1,2,...,N , -® <t <o,

is given. This is the time-pulse problem. The corresponding space-pulse problem is

defined for t > 0 and = @ < T < © with

5.4 W, (0,7) =Wpo(r) , P=l,e..,N, me<T <™,
given. Clearly {5.2) and (5.3) constitute the appropriate problem for us here.

The two problems {5.2), (5.3) and (5.2),(5.4) are dual to each other; both are
well posed and the anelysis below applies to both.

The physical meaning of the time-pulse problem is the following. The source
{ef. (1.1)) is not precisely time harmonic with frequency w but is a narrov band
signal centered sbout w. The input power of the source into the forward propagating
modes is described by the function W#o(t) . In the approximation we are working here
the average mode powers travel in space-time according to (5.2). In the absence of

stochastic effects, &pq = 0 and bp = 0 (we essume no sbsorption), equation (5.2) tells
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us that the pulses launched at T=0 (range zero) propagate undistorted with the group

velocity of the corresponding mode:
5.5 wp(t,r) = WPO(T—vpt) .

What is the effect of mode coupling upon the space-time behavior of the pulses
Wpo(t) » P=l,...,N, - ® < § < @, launched at range zero {1=0)? BEven though (5.2),
(5.3) is a realtively simple problem, well suited for numerical computations, it is
not easy to get a general idea of what Wp(t,r) looks like without additional assump-
tions. These assumptions fix the size of the terms in (5.2) relative to each other.

We shall examine two ceses as follows.

v

1
(i) The terms e ¥

and —prb are comparable to each other but the term

N
.6 W - W
2 q_Z_l (apq q " %pq p)

is an order of magnitude larger.

w
(ii) The term -b W_ is of order one, i._»p is an order of maegnitude bigger
PP v. ot
P

oW
and the term (5.6) is an order of magnitude bigger than %—-—3% .
P

In both (i) and (ii) the coupling term (5.6) is assumed to play & predominant role.
This is reasonable since, after all, mode coupling is what we want to analyze.

To describe (i) and (ii) we introduce a small parameter £ , not related to the

perameter € characterizing the size of the fluctuations in the index of refraction

(ef. (1.1)).

Let us also denote by

5.7 g == p=1,2,...,N,

the negative slowness of the modes. Assumption (i) corresponds to the following.
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(1) 8 is replaced by %'apq but 5 and Bp remain 0{1) and we study (5.2},

(5.3) in the limit ¢ » 0, T = 0{1) .
Similarly assumption (ii) corresponds to the following.

(11%) ®q is replaced by ;5 8

1
8_ is replaced by = and b_ remains O(1) .
-2 pa’ °p P Y€ ®p P ns 0(1)

We study (5.2), (5.3) in the limit e - 0, T = 0(1).

The analysis of {1') and (ii') is carried out by first and second order pertur-
bation theory respectively. We follow the formulation of ([17] Theorems 1 and 2
p. 218) which fits precisely the needs of the present situation.

Define a_ b;
o Y

.8 = a
> = 1 oy
a#p
and the matrix A by
-al a12 alN]
2.9 A= By By e Bgy
1 w2t T8y
Define also
by 0 ... o‘]
0 b2
5.10 B = . . -
-0 bN
vy 0 ... O 8 a . 0
0 v, 0 8
5.11 v= | . 2 . , s= |. 2, )
L 0 N 3 " Sy
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[
[

5.12 P

n
2
[STR
o]

Let us first consider (i'). Then {5.2), (5.3) reduce to the following.

£
wt 1. € W >
5.13 s M +SE--B , T>0,

W (6,00 = W_(8) ,

where Wo(t,T) stands for the N-vector of the functions Wi(t,r) . How A has zerc as

elgenvalue which is isolated if we assume, 88 we do, that

.1h > .
5.1 8yg > 0 s pta

Moreover P is the projection matrix onto the one-dimensional elgenspace spanned by
the eigenvector+ {(1/¥,...,1/N) corresponding to the elgenvalue zero. It is easily
seen (see the appendix) that if T > 0 i.e., we are away from the source region {(as we

must be anyway for reasons explained in Section 1) then

5.15 Um WE(,T) = Wit,t) , T>0,
gvg P

where the function W(t,T) satisfies

5.16 3 =*8 * - WO, T>0
1 ¥
w(t,0) = % E wop(t)swo(t) , -w<t<w,
P-
f & = 8 .
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and

5.17 §=¢ I s (ef. (5.7))
1 P
N

5.18 B=% v
-1 F

If we define

5.19 F=-%,
s

then the solution of (5.16) is
5.20 Wit,t) = et §°(r-?rt) )

The conclusions are as follows, In case (i') and away from & nelghborhood of
the source, in the limit of strong monde coupling,the pulse shape of each mode power
function tends to the same function (5.20) which displays damping with distance from

the source (coupling to radiation) and progegation with speed v which is given by

- 1 ¥ o1 -1
5.21 v=|3 I = (ef. (5.7), {5.17), (5.19))
=1 p

i.e., the harmonic mean of the group velocities.

Let us 8180 consider case (ii'). Equation (5.2), (5.3) becomes

E €
w1 1,09 £
5.22 31'52“8*53—%'3‘“’ >0,

We(t,O) = Wo(t) » Se <t <o,



186

which is anslogous to (5.13) Again we ghall leave details to the sppendix and
discuss the results of the asymptotic analysis.

Let 02 > 0 be defined by (I = identity matrix)

5.23 %021 = - P(§ - Ps)A'l (8 - pO)P .

Note that A-l is well defined, despite the fact that A has zero as an eigenvalue, be-
cause it acts on elements that have no components in the nullspece of A. Unfortunately,
one can not be more explicit ebout the determination of 02 gince, in general, A'l
is not given explicitly. The computation is elementary, however. Let b and v be as

before.

The result is that for T > 0 and fixed, W;(t,T) behaves as € + 0 like the solu-

tion of
=€ 2
5,20 W (t,1) . ;= éﬁaézlzlA - %_ BzﬁefgiT! -3 ﬁe(t,T) , >0,
3T ev 3t
WE(,0) =T (8) =& 1§w(t) D
? o N pol op ! :

More specifically, we have that lwf) -WE| +0as e+ 0 for all p=1,2,...,§, T >0
fixed and uniformally in - ® <t < », Note that, as in (5.13), {5.16}, the asymp-

totic pulse form is the same for all modes but now we have diffusive pulse spresding

in time due to the term %-02 32/3t2 .

To get a better feeling for the nature of the epproximation (5.24) let us assume

that

5,25 v'io(t) = g,

i.e., a Gaussian pulse of width y. Then,
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- (b= 2= 1)2/2(Y2+102) -
ev e ~DT

e

/2n(ya+102)

5.26 TEt,x)=a

from which we conclude that the pulse spreading factor is

2 11/2
5.27 [1 ‘1 93 ] .
Y

The interesting thing about thls conclusion is that pulse spreading of the time-pulse
is proportional to the sguare root of the distance from the source.

let us elaboraste on this furtherf. Given that many modes propagate and they
couple strongly, pulse spreading ig proportional to the square root of the distance
from the source and not proportional to T as would be the case in the shsence of mode
coupling. Thus rendom mode coupling has a certain beneficial effect on mignal prope-
gation. Of course, it 1s assumed that all approximations that led to (5.26) are sat-

isfied reasonably well {(in particular (ii') above ).

Appendix, First and second order perturbation theory for Boltzmann-like equations

Instead of glving a general treatment, like in [17], we shall deal with finite
dimensional matrices which avoid technicalities but display all the features of the

problem. In particular, we shaell give a coordinaste free anelysis, independent of

spectral theory so the results meke sense in great generality?*.

Let B be an NXN metrix such that

5A.1 et — p | t 4w,

¥ This is the effect discovered by Personik [18] and explained as above by Marcuse

[19].

++The notation that follows differs from the one of section 5 but agrees with [17]

(where the terminology "Boltzmann-like" is explained).



188

where P 18 a projection mstrix, projecting into the null space of B. Let A and C
be XN matrices.

Theorem 1 {First order perturbation theory)

For any t > 0 and any N-vector f

o(BlerA)t | PAPt . ,

provided (with C =& constant)

|e(B/E+A)t

5A.3 £| < clg].

Proof.

From the identity

e(B/€+A)t eBt/s

. f‘ (B/e+A) (t-3) , Bs/e

SA.L ds

0

and {5A.1) it follows that we must show

5.5 SB/EHAIE b L PAPt pr <t <Tcw,
Let
wE(t) = e(B/e+A)t Pr
S(e) = AP pr
and
54.6 F(t) = - BN (A-PA)R(E) .

Note that B % is well defined since P(A-PA) = 0 (Fredholm alternative).



We have that

(g— + A - -g—E-) (ue(t)—ﬁ(t)-e‘_f(t) )
_(.g FA - g—t)(ﬁ(t) + E\-r(t)>

- [ BY(t) + (A - g—t) u(t) + € AB"l(A~PA)ﬁ(t) - B-l(A—PA)PAPﬁ(t} }

n

ole)

Hence indeed {|+| is Buclidean norm) (with Pf=f)

5A.7 sup [w®(£)-a(t)]| = o(e) .
0<t <T<o
For this last conclusion we meke use of (5A.3) clearly. The proof is complete.
Note that if B has also pure imaginary eigenvalues (5A4.2) still holds provided
Pr=f i.e., the starting vector is in the null space. The "initial layer" behavior,
however, requires no oscillatory mode.
Theorem 2 (Second order perturbation theory).

For any t > 0 and any N-vector f

50.8 lim e(B/e:2+A/e+C)t .- e(PAP/e+V+PC}?)tPf =0
. ]
£40
where
54.9 ¥ = - P(A-PA)BE (A-PA)P = - PAB™*(a-PA)P

and it is assumed that (C = constant)

,B/a2+A/e+c)tf

5A.10 ! < ¢lel.



and

e(PAP/e+V+PCP)t

5A.11 £ <clg].

Remark 1. Note that the matrix 2%2 + V + PCP has the dlmensions of the null
space of B and hence it is much smeller than NXN, in general. Assumption {5A4.10) is
an g-priorl estimste which In many cases of interest is easily obtained.

Remark 2. The terminoclogy is not standerd but we are, in fact, concerned with
second order perturbetion theory. The result (5A4.8) is a nice way to express the
answers in o general coordinate free way. For the case PAP = 0 see [20].

Remark 3. If PAP has only pure imaginary eigenvalues, then one can show easily

that
~PAPt PAP/e+V+PCP)t T+PCP)t
54.12 oPAPt/e (PAP/E M opp L ST
where
e 1T —PAPs PAPs
5A.13 V + PCP = lim T J e (V+PCP)e ds.
T 0

This is nothing but the method of averaging and the proof of (54.12) is elementary.
Remark L.

If £ is replaced by Pf in (5A.8) then, it will be seen below, the error is 0(e).

Proof of Theorem 2.

By a preliminary argument as in Theorem 1 we can show that it is enough to con-
sider £ =Pf if t > 0 i.e., we may drop the initial layers.
Let

o t) = e(B!€2+A/€+C)t Pt

—£
Z (%) = o(PAP/E+V4PCP)t oo
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We look for an expansion of the form

£ =€ - 2-2
+ + e
u = u +8Vl € 2

with vi(t} and vg(t) to be determined so that

3 - _ _
5A.15 (:—2+ % +C - ﬁ)(ug - . Evi - szvg) = o(e)

From this and (5A.10) the result follows provided vi and VZ are bounded independently
of €. For this we use (5A.11) as will be seen next.

The left side of (5A.15) equals

B A 3 y/o€ =€ 2-g, _
-(€2+€+c at}(u +evl+ev2)-
1,,=E ~£ —€
- [S(Bvl + Ax” - PAPU")
* (B-s + AYS + o° - (V+PCP)WE - & —-36]8' + 0(g)
V2 1 b T

Now we choose
) = - B a-PA)E(E)

With this cholce and (5A.9) it follows that ?r;(t) may be chosen (Fredholm alternative)

a8
;Z(w =-57 {(—-A.B-l(A-PA) +C-7V- PCP) ()

+ B~ 1(A-PA)PAPEE (¢ )] .
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With these choices (5A.15) follows provided W5(t) 1is bounded independently by £ as
(5A.11) implies. The proof is complete.

let us finally remsrk that the sbove demonstration is given in & "mathematicians”
form i.e. in the opposite order in which one first obtains such a result. The steps
can be turned around easily, however. The reason that we have given these elementary
results {in Linear Algebra, essentially) in detail here is that they have broader
significance and, in fact, they are easily modified to produce all the results of

section 2 as is done, for example, in [21] .

6. Coupled fluctustion equetions

The coupled power equations (4.3) derived in section I describe the solution for
the average mode powers in the limit of section 2. For a given realization of the
rendom fluctuetion field u(r,z), however, the modal powers may exzhibit behavior sub-
stantially different from that of their statistical averages., Therefore, it is impor-
tant to have some quentitative measure characterizing how far s given realization of
power content in a mode deviates from its statistlical average. Obviously, if one
can solve (3.10) explicitly, one would have a complete probabilistic description of
the modes as random functions of range (in the usual asymptotic limit). However,
(3.10) is too difficult to solve explicitly and we only want information about power

fluctuation. So we settle for the quentity

6.1 <R @dMOP 5 <D0 051

r=1,2,...,§ ,

in the limit € -~ O with T fixed. In this section we shall derive equations for

second moments of modal powers. Using these coupled fluctuation equations and (4.3)

we can then calculate {6.1}.

Define U}s(T) by
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6.2 v, (1) = ii.rou <|c’1(,e)(t)|2 lcé,'e)(r)l‘?>

#o o *. # *
c c P (7T dede
f rcr s%s ( € 5C ’co’co} cd

Using (3.10) and (3.12) we derive, as in section 4, the following equations for Urs(r).

dUrr(T) N
6.3 ——=-»y (1) +2 pgl arpteurp -vu.1,
pir
r=1,2,...,N,
dUrs(r) N
—w = [, +o_+ Eafs]Urs + le a.rP(UpS - U]
I
+ a (U _ -~y )
p=1 PE rp rs’ ?
1<r,s<N, r#s
2 2
U, (0) Icorl ]cosl R l<rs<N.

Here,apq and bp are defined by (L.4) and (4.5).

Clearly the quantity of interest (6.1) is given by

i/2
[0 - & ] , l<r<w,
where Wr(T) satisfies {k.3). Thus, it suffices to solve (6.3).

To gain some insight into the structure of the equations (6.3) we shall consider

some simple cases.

For a single guided (trapped) mode (N=1) it is clear that
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-2blt

6.4 v (0 =e 0 (0) =WAT)

vwhere U,,(0) = | gollh

mode decays exponentially with range as the energy is scattered by the random inhomo-

. In this case, the expected value of the power in the single

geneities and lost as radiation into the oceean floor. Note that the fluctuation
(Ull(T) - W?_('r))l/2 = 0 i.e., the power deceys to zero with probability one (cf.
(3.21)).

Let us slsoc consider the case of two gulided modes {¥=2). For simplicity we shall
assume that the radiation loss coefficlents b, and b2 are equel; b, = b, =b. Also,

1 1 2
since 8y, = 8y is the only coefficilent that appesrs we shall call it a. Then, (6.3)

becomes
U, 1L 0 0 v, -2 Lk 0 ull
6.5 Llyg = - 2b g 1 0 U + 8 1 -b 1 U
: 4t 12 12 12
Uy 0 0 1 Ups 0 L -2 Uy,

The solution of {6.5) is:

- - - .
[ Ull(T) [2+3e-2a1+e-6ar] [h-he“éaT] [2_3e-2ar+e-6arj [Ull(o)

-2bT
6.6  |u,m | == | [-etm [ovhe™05T]  [1-¢57 u,,(0)
U22(T) L[2_3e-2a’t+e-6a'r] [h~he"6aT] [2+3e-2a1+e-6a13 U22(0)

Note that UiJ(T) T, 0, &8 should be by (3.21). In the sbsence of radiation loss
i.e., b=0 , we obtain
2,2

.

2
6.7 Un U (1) = Un U, (1) = 2 Un U, (1) = =(|e .|+ |e_,]
T T V22 T V12 3% o2



185

N
Since W (1) +3 J |e |? as T+ =it follows that
r N p=1 op
2, _\y1/2 2, yw1/2_|%1]% + [®02|>
6.8 Lim (U, (1) = Wy (t)7° = Um (U,,(1) - W3(1))~/"= .
Theo Theo 1z

Let us next consider the general case of N trapped modes in the absence of

radiation losses. We observe that setting

6.9 U,. = 2V, = constant 1<rs8<N,r¢s

determines a critical point for (6.3) (with by =b, = .= by = 0) . This point is

asymptotically stable if apq>0 s P + q , and this implies that the constant is given

by

6.10 2 %I le 12
' N(H+1) or

r=]

which generalizes (6.7).

From (6.10) and the equipartition result for wr(‘t) it follows that

u_ (1) u__ (1)
6.11 Un L= 2 Un B = 2 N
Theo wi('r) The TV (T) Lags ’

Consequently, the normalized covariance of the modal powers spproaches the following

limit as T 4

UB(T)-WI‘(T)WS(T) _a
wr(r)ws(-r) TN+ ?

6.12 1lim
T4
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From this it follows that for N large the cross correlation among mode powers becomes
relatively less important.

Ancther consequence of {6.11) is the relation

2
U (t)-wi(t)
6.13 pp eI Nl Ly s N Aw,

Tteo wi(r) N+l

which says that the relative fluctuations become large (=1) as N + = .

We close this section by explaining why we feel it is important to study the
dynamics of mode power exchange in the absence of radiation even though radiation
losses are indeed & fact of life. It will become apparent in section 8, where a high
frequency limit is teken (N + «) , that if the random fluctuations in the transverse
or depth direction are not too severe, radiation loss is negligible for meny of the
lower order trapped (or guided) modes. Only the higher order modes whose transverse
wavenunbers are close to the edge of the propagating wavenumber band will be sble to
couple energy intoc the radiating modes., Thus, energy initially imparted to the lower
order modes must diffuse through the guided {or trapped) modes and migrate to the
bend edge before it can couple into the redietlion spectrum. That is why it is impor-

tant to understand the nonradiating case.

7. Depth dependent guantities

In this section we point out, very briefly, that information about mode power
statistics can be used directly to obtain informastion about the pressure field.

Consistent with the various approximations of section 1, from {(1.12) and (1.16)

we have
N iBr‘r/s2
T.1 p(-r/ae’z) = Z —e——/B_——cr(T/Ee)\)r(z)
r=1 r

K “1/h 1K /el >
+ [ Y e ely,t/e)viz,y)ay

0
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We shall concentrate on that part of the pressure that is due to the trapped modes

and set

iR T/e2
(e) ¥ 7 ()
.2 ,z) = e
7 p'(T,2) er " c.

r

(v (z) -

Clearly

R B AR
€ _ e € €
7.3 Ip*=/(1,2) | = r,g=1 _;§:§:==___—_ c. (T)cS (T)vr(z)vs(z).

If we choose A > 0 so that A is small compared to changes in Wr(T) of (4.3) but A/a2

is large while Br - Bs is strictly positive for r # s , it follows that

Il ~1

T+A
7.4 lim %- J <|p(€)(0,z)|2>d0 =

1 2
W {th(z) .
€Yo T 1 Br T T

ot

The meaning of (7.4) is this. The ensemble average of the squared modulus of the
pressure as a function of depth and range, smoothed in renge by a moving average,
behaves, in the limit of weak fluctuations and long ranges, like the right hand side

of {T.4) where LA is determined by (4.3) and vr(t) are modes (ef. (1.7) - (1.10)).

8. High frequency spproximation to the coupled power equations

In ([22]), Chernov uses = geometrical optics formulation to develop a ray dif-
fusion equation for propagaetion in a random medium. This equation, satisfied by the
probability density function, is essentially the heat equation, where time and space
are replaced by range and rey angle, respectively. This equation is very appealing
to the intuition since we expect that a highly directional acoustic excitation would
spread out or diffuse in angle as range increases due to scattering by the random
inhomogeneities. This rey diffusion model has been applied to acoustic propagation

in randomly inhomogenecus oceans by Weinberg and Mellin [23] , [2h].
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The purpose of this section is to illustrate how one can srrive st a diffusion
model by applying sn eppropriate limit to the stochastic framework and coupled pover
equations that we have derived. We are motivated and guided by the work of Gloge
[(25] end Marcuse [17] , [26] in the arem of electromagnetic propagetion in optical
fibers. For definiteness, we shall consider & representative model problem and de-
termine the behavior of the coupled pover equations {4.6) in the limit where fre-
quency {and thus the number of guided modes, §) increases.

The model problem that we shall conslder is the slab configuration shown in
Figure 3. The average soundspeed is assumed to have the plecewise-constant form shown
and we assume that the random soundspeed fluctuations are confined to the ocean region
0<z2<4d, i.e. ul{r,2) = 0if z > 4. For simplicity, we shall assume that the
density of the medium is constant for 0 < z < ®, Then, noting (1.%) and (1.5}, we

demand thet the scaled acoustic pressure p(r,z) satisfy:

2 2

8.1 ope| i BB | p e efutral = 0
r 9z
pl(r,0) = 0

p(r,z) and g—z p(r,z) continuous across z = 4
where k = w/ co = 2Wf/¢° and the mean index of refraction n{z) is:

8.2 n,>1, 0<z¢<4d

This problem is similar to that modelling the propagation of electromegnetic waves
in a dielectric slab whose refractive index is randomly perturbed. In fact, the
texts of Marcuse, [16] , [26], provide an excellent reference for the present dis-
cussion.

We begin by deriving the mode functions. For the bound or guided modes, we must
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solve the eigenvalue problem {c.f. {1.7)):

2
d 22 _ a2 _

8.3 ;—;\:P(z) + k' n (z)\;p(z) = Bp\)p.(z) s p=1l,...,N
vp(o) =0

a
\)P and ?zl continuous scross z = 4.,

r |\Jp(z)|2dz =1

0

where n(z) is defined by (8.2). Define:

- L2 2 2 2
8.4 K = -k g = n%g -
P Bp i P 1 8
The eigenvalue equation for Bp then becomes:
e
. + =
8.5 GP cos Gpd Kpsin Gpd =0 or tan apd Kp . k< Bp < nyk

Notice that the number of guided modes, N, is determined by the number of solutions

to (8.5) that exist within the range k < Bp <n,k, This integer N is, therefore,

an incressing function of frequency or wevenumber. The elgenfunctions vp(z) have

the form:
= | A sin ¢ 2 0 <z <
\)P(z) psin 0.2 fz<4d
-k (2-d)
8.6 LAsinGPde . d<z<w
X ( sinQGd) -1/2
A =92 +dll -~
20 4
P “p P
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For the radiastion modes, i.e. the mode functions corresponding to this continuous

spectrum, we solve the transverse problem (c.f. {1.8)):

2—2 v(v,2) + K02(2)v(y,2) = yoly,z) , 0<¥y <k
dz

2

8.7 vw(y,0) = 0

wiy,z) and %E‘(Y,z) continuous across z = 4 .

wa(YsZ)v*(K,z)dz = §(y-})
0

where §(+) denctes the Dirac delts function. There is no eigenvalue relation assoc-

iated with this problem. A continuum of solutions exist, one for each value of vy in

the range 0 <y < k2 . We define:

8.8 E(Y)5‘42~Y s n(Y)Ev’z§k2—7 s 0_<__Y_<_k2

Then, the solutions of (8.7) have the form:

wly,z) = AYsin nz 0<z<a
8.9 Av[sin nd cos E(z-d) + % cos nd sin §(z-d)], d <z <
A =/ [Tr(gzsinend + nzcosend)]_l/z , 0<y < K2

Y

There may, at this point, be some question about solutions (8.9); they do not corre-
spond to intuition. Recall that these solutions are the radiation modes; & super
position of these modes can be used to represent energy lost by propagation into the
ocean bottom. One would then quite neturally expect these mode functions to possess
an outward, travelling wave structure in the region d < z < =, 1Instead, equations

(8.9) indicate a standing wave structure in this region. 1In fact, the radiation
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modes correspond to a plane wave excitation of the configurstion st different inci-
dence angles from z = ®, i,e. from infinitely far in the ocean bottom. The resolu-
tion of this diffieculty lies in the fact that these modes are not physically meaning-
ful individuelly. It is only & superposition of these modes that makes physical
sense. The situation is somewhst analogous to that encountered in Fourier sine or
cosine transform theory where finite energy signals are constructed via a superposition
of these infinite energy, standing wave trigeonometric functions. A good discussion
of this point 1s given by Mercuse in [16] .

We have alluded to the fact that an angle can be assoclated with the modes of
the problem. This angular perametrization will now be made explicit. We introduce

the angle 6 by defining the longitudinal and transverse wavenumbers to be:

8.10 = n,k cos® ¢ = nk sind
This perametrization is shown schematically in Figure 4., In Figure b we have salso
depicted an angle 8, which is defined in a natural way by the "econtinuity of longitu-

dinal wevenumber requirement across the interface, Since kX < 8 < n.k , the angle 8

1
renges from O to a critical angle Sc < m/2 defined by the relstion:

-1
8.11 nk cosf, = k or 6, = cos (l/nl)

From Figure 4, we observe that 8 = Gc corresponds to So = Q0. Consequently, modes
for which 0 < 8 < 8_ (i.e. k < 8 <}nlk) are the bound or guided modes. The mode
functions vp can be viewed as a superposition of plane acoustic waves whose sngle of
incidence 6 is too small to permit penetration into the bottom. Instead, these waves
guffer totsl internal reflection &t the ocean-bottom interface (z = ). As (8.6)
indicates, the acoustic field in the bottom region for these modes is exponentially
decaying rather than propagsating.

Since we shall ultimately be interested in the behavior of the coupled povwer
equations in the high frequency limit, we shell digress now and examine the approxi-

mate form of the gulded mode function vy (given by (8.6)) in the high frequency case.
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Using (8.4), eigenvalue equation (8.5) can be recast as:

o a
8.12 ten 0.4 = - 2

2 .2 2
M ka)%s10%0 ~ (0 )

From this relastion it follows that:

8.13 Oey = 0 5 1/

Moreover, for the lower order modes (i.e. UP<<n k sinec) we heve:

1

8.1k cp = pr/d

Therefore, we can see from (8.6) that as frequency {(or equivalently wave number k)

increases, the mode functions of the low order gulded modes take on the approximate

form:
o~ }’é’ E"TZ
8.15 vp(z) = ry Bin 3 . 0<z<d
o, d <z <®

Equation (8.15) is what one would intuitively expect. As frequency increases, the

exponentially decaying fleld becomes more tightly bound to the slab. In the limit,

the mode function satisfies a pressure-release boundary condition at z = 4 also.
Having developed the high frequency configuretion of the gulided mode functions,

we shall now consider the random field H{r,z) in greater detail. Thus far, we have

assumed that u has en expected value of zero, is localized in depth to the reglon

0 <z < d end has wide sense stationary matrix elements (c.f. (1.15) and (1.19)).

In section 2 we have also mentioned a mixing hypothesis that must be satisfied by

these matrix elements in order that the stochastic analysis apply. This hypothesis

is tantamount to assuming that statistical independence is achieved in the asymptotic
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limit as the range separation becomes infinite. Now, however, we shall be more
specific in our assumptions for the model problem since we want to explicitly evalu-
ate the cosine transforms defining L and b in (4.4) and (4.5). Accordingly, we
shall assume that the random field y has the following correlation fumction:

<lv-r'|/2
8.16 <ur,z)ul(r',z')> = R(z,z') %

where the support of R is contained within [0,a]x[0,4] since ¥ vanishes if z > 4.
This decomposition of R into the product of a transverse, depth-dependent correlation
and an exponentlally-decaying function of range meskes the cosine transform eveluation
particularly simple. The assumption is, moreover, not as restrictive as it mey, st
first glance, eppear since we could equally well deal with superpositions of the form
M “lr-r'| /8y
E Rm(z,z') %- + We choose as simple a form as possible to best illustrate
m=1 m
the relevant features.

From (1.19) and (8.16) it follows that:

( Y —r/R
nlk) e d (4
8.17 <u;q(r)upq(0)> = FE;E;E—-__— | £ R(z,z')vp(z)vq(z)vp(z')vq(z')dzdz'
(nlk)he-r/z drd
<u;Y(r)qu(0)> = hVFVBpE R(z,z')vp(z)v(Y,z)vP(z')v(Y.z')dzdz’

where the mode functions vP(Z) end V(y,z) are defined in (8.6) and (8.9) respectively.
Let us use Ipq and IPY to denote the double integrals sppearing in (8.17). Then,

the coefficients apq and bp can be expressed as:

N
8.18 _ k) Iy
' ®Pe " g g [1+(8.-8 )222]
BBa P a
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(nlk)h fkg Ipydy
b = e
P 2% AL14(8 -A)%e2]

Since both vp(z) and V(Y,z) are sinusoidally-varying functions within the region
0 <z <d (e.f. (8.6) and (8.9)), Ipq and IPY involve spectral evaluations of the
depth-dependent correlation function. In fact, if we define:

S(a,0') = ;2r_ r r R(z,z')cosoz cosa'z'dzdz’
0 0

then Ipq_ and IPY can be expressed in terms of this two-dimensional cosine transfornm

g8 follows:

2.2
8.1 I =g a°A° [S(0 -0 ,0 -0 ) +8(0 +0 0 +0 ) - 8(0 0 ,0 47 ) =
? pq = § Aphq [8(05-04:0,-0,) + 8(0,30,,0, g = 8(0,9459,%9,)
s{o +0 ,0 -0 ]
P a’p g
I =T 4°4°[s(o_-n,0 -n) + 8(0_+n,0_+n) - S(6_-n,0_+n) -
Yy 8 py P P P P P P

S({C_4n,0 -
( P n)]

Heving obtained this representation, we shall introduce & bandlimiting ideslizetion,
i.e. we shall assume that the support of S‘lies within a finite square of (u,a')-space.
Theoretically, this assumption is impossible since we have already assumed that
R(z,z') has compact support. However, if the ocean depth d is great enough and the
rendom fluctustion Y does not vary too rapidly as a function of the depth variable,
this assumption is a reasonable approximation.

We shall, for definiteness, assume that the support of 5 lies in the region
[0,3n/2a1%x[0,3n/2d4] of wavenumber space. Recell from (8.13) that the transverse

wavenumber increment for adjacent modes is O 2 w/d. Our compact support

p+1p
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assumption, therefore, is tantamount to a "nearest neighbor interaction" assumption.

With this assumption, (8.19) reduces to:

T
8.20 I = A s O_ =0 - -ql <1
- 5 (0,-0,0,-0,) [p-a| <

. 0 , otherwise

S ) a2 g 3
= | gAA stmapn-a) n-a_| <35

I
pY P

L\ 0 , otherwise

Moreover, from (8.13) we have:

= T s(n/a,n/a) = T5 s

8.21 I =
P ,P-l 24 2d2 [o]

which 18 independent of the integer p .
As a consequence of (8.18) ana (8.20), the only nonzero 859 coefficient is

8 =8 . For brevity, we define:
P :P_l P‘l »P i

8 . 22 - = 8‘
aP aP sp-1 p~1,p

Then, equations (4.3) become:

4 -

8.23 ST Wy = - bW, 4 az(wa-wl)
d - -— —
dTWp--pr«fa*l(p*‘l p) a(ppl) 2<p<N-1
9—w=-bw (W=t ;)
art 'N - By

We shall use A and § to denote froward and backward difference operators, respectively,

i.e.:



8.24 MM =W - ¥ s GWP W -W

Notice that in (8.25), we have simply rewritten unity as:
8.26 Ap = (p+tl)p =1 , 8p = p-(p-1)} = 1

From (8.14), we note that the integer p can also be expressed as:

nlkd
T

&

8.27 p = %-0 =

s8inf
P P

For any glven value of p, spproximation (8.27) tends to equality as the wavenumber

k becomes infinite. From (8.18) and (8.21) we have:

2 2,2
O - o -0
8.28 a = (k)™ (1/8) Mgy 180050 1195y
P zcosepcosep_l[1+(nlkz)2(cosep-cosep_l)e]

Equation (8.27) implies that Gp—@p_ = 0((n1kd)-1) as kx + » ., Therefore, noting

1
{8.15), it follows that:

8.29

s
= (nx)? C) + 0(1)

&
P bdacosaep[1+(nlfeﬂ)zsinzep]

s k + ©. Therefore, if we use representation (8.27) for the finite differences

Ap and 6p, i.e.
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n.kd n.kd

1 _ By
= (sinep+l - sinep) » Sp=—

8.30 Ap = (sineP - sinep_ )

1
in (8.25) we obtailn & net factor (nlk)2 in the denominator which is balanced by the
(n,k)e- dependence of a.p .

These observations point the way to the desired diffusion spproximation. We

shall define a continuous variable x as:
- d d - a
. = < & - = —
8.31 x = — 8inf s 0<x<—sinf =x <5

and view the coupled power equations as finite difference approximations to & partial
differential equation of diffusion type defined in terms of independent variables T
and x. Thus, we interpret Wb(T), bp and s, as sempled values of functions which we
shall denote by W(T,x), b(x) and a(x), respectively. We can see from equation {8.30)
that this interpretation is appropriate. As k 4+ ®©, the number of guided modes, N,

becomes infinite and the set of sampling points {xp} becomes dense in [O,xc] . We

p=l
obtein the correspondence:

A § ) 3
8.32 ) [ap gl:wpp(r)jl s 2<p<N-1 > 'é'f[a(X)ax W(T,x)], 0<x<x,
where
ﬂSo
8.33 a(x) =

T 4201 (/)2 101+ (n8/20) 2 (mx/a)2 ]

Moreover, if the range correlation length & is much less than the ocean depth 4, i.e.

me/24 << 1, then:

™™
0

hdefl-(ﬂx/d)z]

8,34 a(x) =

Lastly, if sinec << 1, i,e. if n, is only slightly greater then one, then:



208

w3
8.35 a{x) 2 =2 = a(0) Z a

kg °
We now consider the radiastion loss coefficient bP for 2 <p < N-1. As (8.20)
indicates IPY is proportional to S(n-cp,n-op) . However, from (8.8) end the fact

thet 0 <y < x® » 1t follows that:

8.36 n-o_ > Ang)®4® =n

k& sin&c - GP = nlk(sinec - sinep)
Consider now an arbitrary but fixed value of 6, such that 0 < 8§ < Gc , and let the
index vary eppropriately so thet lim ep = 6. From (8.36), since sinec - 8ind > 0,

ktoo
it follows that

8.37 lim n-o_ = «
koo P
However, as & consequence of the band limiting assumption, S(n-cp,n-cp) will be zero
whenever In-cp! > 3r/2d . Therefore, for that particular value of © , the limiting
velue of the radietion loss term, —bpwP , is zero. Since the value of 6 was arbi-

trary, we conclude that the continuous variable counterpart to (8.25) must be:
8.38 2owir,x) = & lalx) & wlt,x) 0<x<x
‘ 3t ? Ix 3x * 4 e

Because of the bandlimiting assumption, coupling to radiation will occur only
for modes whose angle 0 is essentially the cirtical angle. Energy initially possessed
by a mode whose trensverse wavenumber is epprecisbly less than nlk sinec can not be
converted directly to radiation loss. Rather, this energy must first diffuse among
the guided modes. Only when this energy 1s finally coupled to a mode near the edge
of the band {i.e. p ¥ N) can this energy subsequently be coupled to the continuous
spectrum and be lost. Therefore, as (8.38) indicates, radiation effects are absent
from the description of the limiting interior coupling mechanism. As we shall see,
however, the presence of radiation loss will play an important role in defining the

boundary condition at x = x,



209

To obtain the boundary conditions at x = 0 end x = X, > e shall exsmine the
finite difference equations for p = 1 and p = §, respectively. Recall that for
2 <p <N-1, the (nlk)e- dependence of 2 was belsnced by & similar growth arising
from the Ap and 8p terms {c.f. {8.29) and (8.30)). For p=1 and p=N , however, such
a balance will not exist., The identification of these equations as finite difference
approximants to continuous variable equations will produce terms that become infinite
as k 4 ®. We shall obtain the boundary conditions by suppressing this growth, i.e.
by demanding that the coefficients of these terms that grow with wavenumber be zero.
Let us first consider the equation for p=l and deduce the boundary condition for

x = 0. The radiation loss term, -blw will clearly not play a role. Therefore,

l s
from (8.23), we see that we must consider the equation:

8.39 $ (1) = apli(n) - Wy (1)) = & %;wp('r)

p=2

From (8.27) and (8.31), however, observe that:

8.40 X, =

Ao

sin62 = 2/nlk Y0 a5 k4o,

Therefore, the continuous variable counterpart of (8.39) is:

8.41 2 (1,00 = (nx) &, EW(r,0) +0(1) ws xte

Since g, # 0 , we require that:

3 =
8.42 = w(t,0) =0
The boundary condition at x = X, is obtained in a similar way; the situation

is complicated somewhat, however, by the fact that the radiation term now plays a

significant role. From (8.23), the equation that we consider is:
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8.43 Soig(t) = o () - agliig(t) = Wy (1))
Observe that:

4 = A =4
8.44 Xy = 8infy = n K tx,=5einf, a8 k4w

Therefore, we cbtain the correspondence:

8.15 ay (g (1) = Wy 1 (7)) = &y gzwpm - (o) alxgpdir,x) +

p=N

o(1) — (nlk) a(xc) -g; w('r,xc) +0(1) as kx ¢ =

Let us now consider the radiation term, - byWy(T). From (8.18) we have:

N 2
(n.k) X I, &
B.L46 b =—nl—— [ Y 2.2
N2y A [+ (8,451

where I, is given by (8.20). Using (8.9) we have:

Ry
Y n_k
N Tl ¥ Eni:?‘é"n;g'zzdnz 73
N nlks:l,nee [l"'(sn' 152 J[ €"s1n " nd+n “cos“nd

where £ and n are defined by (8.8). Because of the bandlimiting assumption, the

actual (nonzerc) range of integration extends from n.k Binec =n, to ne * 3n/24 .

1
We are interested in determining the asymptotic behavior of 'bN ag k + ., Therefore,
we cbserve that forn <n <n  + 3n/2d , the term (BN-ﬁ)E remains 0(1) since

BN and /¥ are both equal to n.k cosec + 0(1) . Therefore, to simplify our compute-

1
tions, we shall assume that the spectral density function is flat over the range of
integration and equal to the constant S {c.f. {8.21)). With these simplifications,

(8.47) becomes:
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2 n +3m/24 42 2
8.18 by v (nlk)aso ) z 2 2.%2 )
Lacos Bc A ] -nc+nccos nd

¢

where we have used the fact that § = 2—“5 and the approximetion A§ 5 2/d. Define
¢ = (n-nc}d .  Then, (8.48) becomes:

(n k)% . (M2 g o,
8.9 by VT3 20 na [ 2 . ¢2

4acos™0 e o (.TT;E) ¢+cos (¢+ncd)

To exhibit the frequency dependence ¢of the integral it suffices to assume that
cos(cb° + ncd) = 0 for one value of ¢o lying in (0,37/2) ; the argument for two zeros

or endpoint zeros is basically the same., Choosing a small, fixed value of § > 0,

we have:
=6 3m/2
8.50 ] - < 3 a0 <23 3/2.5¢26 = 0(1) as k 4 =
5 b +6 (Fog)¢reos”(+n 4)
[»] <4
and
QO:NS ¥y §
8.51 —re 30 v f —a .
8- (n—og)dﬁcos (¢#n a) 1 (@M dle ¥
ngd

= »’ancdd:o tan~t 8 - = O(/ncd) = o(/nlk) as  k 4 =,

From {8.49)~(8.51), we conclude that bN u" (nlk)2 as k + @, Since our simplifying

sssumptions did not qualitatively alter matters, we expect that such an order of

growth prevails in the general case also,
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For convenience, we define:

8.52 by = (nlk) b(k), where lim blk) =
Kt

Then, the continuous~verieble counterpart of (8.43) becomes:

8.53 - Wlt,x) = -(ak) [b(IW(T,x) + alxy) S=W(T,x)]  + 0(1)

Recall that Xy + x, as k 4+ ®. Therefore, guided by the ansatz of suppressing growth
as k + © , we obtain the following boundary condition at x = X,

8.5k Bk (T,x) + alx) g—xw(r,xc) =0

Thus, we have a freguency-dependent boundary condition of impedance type. This
boundary condition is intuitively very appealing. Notice that if radiasticon effects
were not present, i.e. b(k) = 0, then the boundary condition would reduce to one of
reflecting type, i.e. %; W(T,xc) = 0, since a(xc) $# 0. This condition, together
with (8.42) and equation (8.38), would imply a conservation of energy in the contin-

uous variable case since:

X x
a c _ CL _3_ - @__
8.55 Fra £ W(T,x)ax = f 5 a(x) e W(t,x) dx= a(xc) e W(T’xc) -
0
a(0) & w(r,00 =0
9x ’

In the presence of radiation loss, since b(k) *+ © as k + ©», we see that boundary
condition (8.54) becomes increasingly ebsorptive as wavenumber increases. In the
limit k = » , (B.54) reduces to the absorptive boundary condition W(T,xc) =0.

In summary, then, we restate the limiting continuous variable diffusion approxi-

mation.
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in
a 6c

By

8.56 g?-W(T,x) = %; a(x)%;W(T,x), 0<x<x =

3 3 _
aw(r,c) =0, b(k}W(T,xc} + a.(xc) E{-W(T,xc) =0

To complete the specification of initial-boundary value problem (8.56), initiel data,
i.e. W(0,x) = Wo(x) , must be given. We obtain the initial data by viewing the ini-

tial conditions of discrete system (8.23), 1.e. {W (0) ¥

p=1" as sampled values at

X = xp of the limiting function that we have called Wo(x).
Note that if approximation (8.35) is applicable, we obtain the following explicit
solution of (8.56):
-8 AQT

-~
8.57 WiT,x) = Z Ane ©B sosk x
n=1 n

where the eigenvalue equation is:
8.58 b(k) cosknxo = kna(xc)sinknxc . n=1,2,.

and the coefficient An is given by:

¢
w cosk xdx

8.59 A =

" . n=1,2,...

€ cos A xdx

[
i

Appendix A. Numerical study

In this section we present the results of a numerical study conducted to compare
the coupled power equations of section 4 with the high frequency diffusion model de-
veloped in section 8. A comparison is made in the two cases where radiation loss is

both ebsent and present.
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For simplicity, we have adopted the assumptions that lead to approximations
(8.35). Conseguently, we assume a nearest-neighbor interaction among the bound modes
= ~ 2
with S p-1 "% = (nlk) a 5 P=l,...,N. Aleo, radiation loss, when present, is
assumed to occur through coupling between the Nth bound mode and the continuous spec-

trum; thus, bp =0, 1<p<N-1and by = (nlk)2 Ba.c where B is some positive constant.
Therefore, if we define the independent varisble £ E (nlk)aa.c‘r , the coupled power

equations become;

8A.1 %EW =W, - W

—_— = - < < N~
T = Yoy - Mt M ) s 2 <P ST

d

F -(B+1)uy + Wy o

For the cese of no radiation loss, we Simply set B = 0.

We compare discrete system (BA.1) with the solutions of the diffusion equation:

32

8a.2 -g-_l:w(‘r,x) = a ———EW(T,x) , T>0; 0<x<x,
9x
subject to the boundary conditions:
9 3
8A. 3a E;W(T,O) =0, EW(T’xc) =0 (no radiation loss)
8. 3 w0 =0, Wrx)=o0 (radietion loss)

Observe that, for simplicity, we have asdopted the limiting absorptive boundary con-
dition for the case where radlation loss is present., Let y = x/x o end recall that
x, 2 N/nlk) {c.f. (8.27) and (8.31)). The solutions to (B8A.2) with boundary condi-

tions (BA.3a) and (B8A.3b) can be expressed as:
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@ ~(am/M)%E
8A.ka W= Z Ahe co8 nmy , {no rediation loss)
n=0
o —((me1/2)n/m)%
8A. kb ) B e cos{n+l/2)my , (radietion loss)
n=0

where Ah and Bn represent the appropriate Fourler coefficients and 0 <y < 1. {For
simplicity, we shall use the notation W(E,y).).
The initisal conditions that were adopted correspond to an initial excitation of

the lowest order mode; thus, for (8A.1) we assumed that:

84.5 wl(o) =1 wp(o) =0, 7=2,...,N

For the diffusion epproximation (8A.2), (8A.3) we have adopted initial conditions
B4a.6 w(o,y) = &(y)

1 b
80 that f w(o,y)dy = wp(o) = 1., With that choice of initial condition, the
0 =1

P
Fourier coefficients in (BA.4) become:

8.7 Aj=1, A =2,n=1,2,... ;3 B =2, n=0,1,2,..

The numerical study was conducted for a 10 mode case, i.e. N = 10. Equations
(8A.1), with initial condition (8A, ), were integrated numerically to £ = 50, with B
gset equal to O and 1 in the respective cases of no radiation and radietion loss.
These resulis were compared with the diffusion approximation solutions, where the
infinite series was found to be adequately approximated by the sum of the first 5
terms, (i.e. n = 0,...,4). Moreover, we have used the approximation:

p/N 1
8A.8 W(g,(p-1/2)/N) = £ w(E,(p-1/2)/N)

{p-1)/N
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Figure 3. Modal Power vs. Normalized Transverse Wavenumber; 10 Mode Case.

The points described under captions (1) below represent plots of modal power
computed using the coupled power equations. The results obtained using a separation
of variasbles solution of the diffusion approximetion are described under captions
{ii); these latter points are connected by dashed and solid line segments. Note that
the coupled power eguations and the diffusion approximation generate virtually

indistinguishable results.
No Radiation Loss; 10 Mode Case

(a) £=0.5:
i) wp(.5), 1sps10: @ ° ®
ii) 0.1 w(.5,(p-.5)/10), 1 £ p < 10, connected
by: - -
(b) E=5.0:
i) wp(s), 1<ps10: 0 o) o
ii) 0.1 W(5,(p-.5)/10), 1 € p £ 10, connected
DY —— e —
8t v
(e) E=50.0:
x i) wp(50), 1 _p_10: & a a3
ii) 0.1 W{50,(p-.5)/10), 1 < p € 10, connected
.6‘ by: - — — ove — ot—

5 ' Radiation Loss; 10 Mode Case; B =1

2 \ (a)

8 . \\ (d4) E=50.0

f: i i} WP(SO), 1<p¢g10: =] o a

Eg \ ii) 0.1 w(50,{p-.5)/10), 1 £ » S 10, connected
= o & by

\ (c)

Or - Qe a--a—\&-ca- [ WY, S, .
W)
N e

% R 10
y

NORMALIZED TRANSVERSE
WAVENUMBER
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in the comparison of the diffusion epproximation solutions with the modal powers,
WP(E}, p=l,...,8.

The results are presented in Figure 3. In this figure, the values of N'lw(g,
(p-1/2)/N) are plotted at ordinate values ¥y = (p-1/2)/8 , p=1,...,N and these values
are linearly interpolated by dashed and solid lines. The values of WP{E) s P=l,...,N,
are also plotted at ordinate values yp . The values of £ used are .5, 5 and 50. For
the case of rediation loss, only the & = 50 results are plotted since the data for
E= .5 and 5 essentially coincides with the results presented for the no radiation
case.

For the case considered, the continuous variasble approximation developed in
section 8 provides a good approximetion to the system of coupled power equations
{84.1). As £ increases, the highly-pesked initial power distribution flattens ocut as
energy diffuses into the higher order (initially unexcited) modes. Until an appreci-

able amount of power becomes coupled into the Nth

mode, the effect of radiation loss
is negligible. Therefore, the data for £ = .5 and 5.is insensitive to the presence
of the radisbion loss term. At £ = 50, however, there is a substantisl difference
between the two cases. In the absence of radistion loss, the power distribution has
essentially resched the limiting equipartitioned state. In the presence of radiation
loss, the power distribution tapers to O as the band edge is approached. There is
also & substantisl reduction in the total power due to radiation loss. A comparison
of curves {(c) and (d) indicetes that at & = 50 more then half the initisl energy has
been radiated.

In Figure 4 we show the results of numerically integrating (6.3) with N = 10

under the same hypotheses introduced above. We do not have, at present, a high fre-

quency approximation for second moments of modal powers as we do for first moments.

Appendix B. Diffusion spproximation for coupled power equations with radistion loss

In this Appendix we shall analyze the system of equatiors

aw; (1)

88.1 e NQ(w’f(r) - wf)‘(r))
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Figure I, Second Moments of the Modal Powers vs. Normalized Transverse Wavenumber;
10 Mode Case.
In this figure only results corresponding to the coupled fluctuation equations
are plotted. The points are connected by dashed and solid line segments simply to
facilitate interpretation. No analog of the diffusion approximation has been

developed for the second moments,

Second Moments of the Modal Powers

No Radiation Loss; 10 Mode Case

(a) E=0.5

Upp(.5), p=1,...,10 @———O——"
(b} §&=5.0

Upp(5.0), p=1,...,10 =Om= =—O= ——O0—

.20
(e) &=50.0

Upp(50.0), p=l,...,10 =Be——B-—-0-
Also: 0.00872 € Upp(50.0), p # q, < 0.009hk

.15 Redistion Loss; 10 Mode Case;B = 1

(a =50.0
(a)
Upp(50.0), p=1,...,10 =O--=0-=--0-

A0+

05+

SECOND MOMENT OF MODAL POWER
-~

(c

[ S N ‘-A-x::- -l O e Do e = &

(d)

0 y 1.0
NORMALIZED TRANSVERSE WAVENUMBER
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ad (1)
——ATLT— WN(T)—ZWN(T)+WN(T)), 1<p<¥-1,
mﬁﬂ

N NB(( umﬂ GO >0,

W0) = 2B, p=0,1,2,...8,

where f(x), 0 < x <1, 18 a smooth function with compact support in [0,1], in the
limit as N + . We shall show that wﬁ(T) behaves, asymptotically for N 4+ &, like

uN(T,;le-) , p*=0,1,2,...,8, where,

¥ 2N
88.2 :%(T,x}=%-§—-—-%3—l, 0<x<1, t>0,
3x

¥ N
X 13
e (o) =0, Bu (T,1) + -ﬁ-ﬁ- (t,1) =0 .

Note that, in turn, uN('c,x) of (8B.2) behaves asymptoticelly like u(r,x) which

is the solution of (8B.2) except that
88.3 uw{t,1) =0,

instead of the N-dependent impedance boundary condition. As explained in section 8,
it is preferable to work with (8B.2) because it shows dependence on the parameter B
and, also, provides & better approximation.

We now proceed with the demonstration of the ssymptotic approximation of (8B.1)
by (8B.2). First we note that uN('t,x) is a smooth function of x €[0,1], since the

date is smooth, and derivatlves are bounded independently of N. ILet
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88.14 ugm = wg(T) - R .

From (8B.1) it follows that

8.5 df‘#’- - ®(r) - ) = ﬂl%%ﬂ - (' (r,d) - u'(1,0))
8.6 d—duz(ﬁl - 30, (1) - 2 (1) + O (x))

- B_I.IN_;:ﬁ -3 PR -2 B e B, 1<pan,
B5.7 dflﬁm Pl « &)

N
= §25%I;il - NE(—(1+B)uN(T,1) + uN(r,Eﬁi)) , T>0

Ug(0)=0 , p=0,1,2,...,N.

We shall snow that the right hand sides of (8B.5), (8B.6) and (8B.T) are o(%) .
Since T is in a finite interval, the maximum principleT for (8B.1) tells us that

uﬂ(r) = o(%) , p=0,1,2,...,N and the result follows.

Expanding the right hand side of (8B.5) we have

i Equation (B8B.1l) is, of course, the backward equation for a random walk on the posi-

tive integers with boundary condition.
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N
P d) - fr,00) - - (1,0

N
2. N 1,1.N 1 1 u
= N(u (1,005 + 5 uxx(T,O)“'-Nz + O(_N3)) - 50-(1,0)
1
= 0(5)

where we use the boundary condition and the equation (8B.2). Similarly, expanding

the right hand side of (8B.6) and using the equation (8B.2) we find that it is also

0(%). Finally, expanding the right hand side of (8B.7) we cobtain

Ne(-—(li-s)uN(T,l) + uN('r,l) - ui('r,l)% + %uﬁx(t,l);—g)
au(r,1)
ar

N
- Nz(BuN{T,l) + %uﬁ(t,l)} + % uzx(r,l) - _3.“.84[1:-1_} + 0(_;;)

o(z=) .

=3l

Here again we use the boundary condition at x = 1 and the equation (8B.2).

We have then shown that for any finite T (fixed)
1
88.8 lwg('r) - D] = o), D=0,1,...,N,

as was intended.

Iet us remark that (8B.1) and {8B.2) have been scaled a bit differently then
the coupled pover equations of section 8 (cf. BA.1)., The differences are not essen-
tial however and can be eliminated by changes of varisbles. In their form (8B.1),

the coupled power equations admit the error estimste (8B.8) which is best possible.
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CHAPTER V

THE PARABOLIC APPROXIMATION METHOD

¥red D. Tappert
Courant Institute of Mathematical Sciences
New York University

251 Mercer Street
New York, NY 10012

1. Basic concepts
The propagation of acoustic signals in the ocean to long ranges is made possible

by the existence of the SOFAR sound channel which acts like a waveguide that confines
the acoustic waves within the water column and prevents thelr interaction with the
ocean bottom,which is generally quite lossy compared to the water itself. The para-
bolic approximetion methods discussed in this article are based on the geometrical
configurations that naturally arise in the sound channel mode of propagation. By
long range propagation we mean propagation to distances of a convergence zone or
greater, the convergence zone spacing being about 30 to 35 mmi (1 nmi = 1 nautical
mile = 6076.1 £t = 1852 m) or about 50 to 60 km. Since the ccean is about L4 to 5 km
deep, we see that sound channel propagetion is mainly in a waveguide that is relativ-
ely thin vertically and greatly elongated horizontally [31~33]. It is this
particular configuration that mekes possible the parabolic approximation.

Thus the parsbolic approximstion in underwater scoustics is quite distinct from
the two other main classes of approximetions that ere commonly used. Geometrical

acoustics methods are based on the approximation that wavelengths are small enough so
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that diffraction effects are negligible everywhere except possibly in a few small
regions, and separstion of varisbles methods {such as normal mode expansions) are
based on the approximetion that the ocean is exactly stratified horizontally so that
coupling between the waveguide modes is negligible. Parsbolic approximetion methods
retain all the diffraction effects associated with the particular geometry of the
ocean scund channel and thus are valid to much lower frequencies than geometrical
acoustics, and they retain the full coupling between waveguide modes and thus are
valid for more realistic, non-stratified oceans than separation of varisbles.

Another important oceanographic fact that is needed in the following discussion
is that long-range propagetion is necessarily low-frequency, usually below 500 Hz or
so. This is becmuse volume sbsorption of acoustic waves in sea water increases rap-
idly above about 1000 Hz and because the spectrum of embient noise often has a broad
minimum in the range between 10 and a few hundred H2. A typical frequency of interest
is thus about 150 Hz and the corresponding wavelength is about 10 m. The wavelength
is very small compared to the width of the sound channel (about 2 km) and many modes
will propagate [31-33].

To make these ideas somewhat more quentitative, let us temporarily adopt the
geometrical acoustics and stratified ocean points of view (which are good for
making rough estimates) and assume that all bottom interacting rays are attenuated
repidly enough so that they don't contribute to long range propagation. The maxi-
mum angle of propagation, also called the "limiting angle", is then given by Snell's

law &as

8, = cos™t (e, /e ) = (2Ac/e

2 min ' max ?

)1/2
o
where 8 is the angle of propagetion with respect to horizontal, Cuin is the minimum
sound speed {at the axis of the sound channel), ¢ is the meximum sound speed {(at

the bottom of the ocean), Ac = and L is some average sound speed.

®max ~ Smin °
Typically, e, * 1500 m/sec, Ac/co < .04, and thus 8y S 16°, The largest angles of

-~

interest in long-range propagation are therefore rather small, and this fact sets

the stage for the parabolic approximation.
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Actually, most of the energy in sound channel propagation lies within a vertical
sector of angles having s half-wldth of about 5° and this kind of propagation can be
viewed as resulting from a seguence of thin lenses as shown in Fig. 1. The effective
sperture is 2B * 4 km, the focal length is R ¥ 25 km, and the focusing angle is
6 ~ B/R% .08rad ~ 5°. The f-number of such lenses is large, £ = R/2B = 6, and the
Fresnel number, F = koBe/R = 2wBQ/A0R = 100 at 150 Hz, is also very large.

Although the focusing properties of the ocean sound channel are highly imper-
fect and full of sberrations, it is clear that aen approximation based on wesk focus-
ing {large f-nunmber) and the Fresnel theory of diffraction should be adeguate.

The basic idea of the continucus Fresnel epproximation can be seen in the uni-

form ocean Green's function expression,

ikc[r2+(z-za)2]lf2

1
1.1 pF g5 €
[r2+(z-z5)2]l/2

where zB is the source depth. If the angle with respect to horizontal is small,

i.e.,

lo] = Jz=z | / r <<,
then we may use the epproximation

1.2a p 2 P(z,r) 71'_; e N

1.2b Ylz,r) = e

It is readily verified that ¥ satisfies the parsbolic wave equation
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Figure 1. Schematic diagram of weak focusing conditions in the ocean.
[
r ol §
$S
Y
Z
Figure 2. Definition of cylindrical coordinate system.
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This is the most simple example of a parsbolic approximstion.

Returning to the real ocean problem, elementary physical optics enables one to
conclude thet in a neighborhood of & focus {convergence zone) the intensity of the
acoustic signal will vary significantly over a vertical distance Az = Xof/w and &
horizontal distance Ar = kofg/ﬂ , Wwhere XO = coﬁn = co/2ﬂv, and v ig the acoustie
frequency. Since f >> 1 , we see that the acoustic field veries very slowly on the
scale of a wavelength and this fact suggests that we use an approximation in which the
field is represented by a slowly varying envelope with the envelope varylng more
slowly in range than in depth. Such approximations arise elsewhere in physics and
are called parabolic aspproximations (see Appendix A for an historical discussion).

The most femiliar example of a parabolic approximetion is that used to describe
the slowly varying temporal envelope of a wave packet, or sonar pulse. Denoting the
wavepnumber as & function of frequency by k{(w), the integral representation of a wave

packet is
1.h Mmﬂ=[ Alw) expli(k{uw)r-wt)ldw ,
¢]

where A{w) is the distribution of freguencies. Assuming that this distridbution is

strongly peaked about the carrier frequency Wy {narrow bandwidth), we may expend

k(w) ,

2 a%
— ,

k(w) = k(mo) + (=) %—*' %’(w-mo)
° o

retaining terms through gquadratic {parsbolic spproximation). (1.2) becomes
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1.5a ulr,t) = $(r,t) explilk(w Jr-w t)1,

where

1.50 blr,t) = f Alu +E) exp HE(SE ret) + —5— dele‘ 1 @ .
0 *o W)

Direct differentiation of (1.5) shows that the envelope function Y satisfies

the parabolic equation

2
16 NN TN T
v 2 u?
g
where Vg = du)/dk s B= —dak/dug dv /dk . Of course Ve is the group velocity,

end B is known as the index of dispersion. As we shall see later, (1.6) also
describes the dispersive spreading of acoustic wave packets in a single mode of the

ocean sound channel. If the pulse is initially gaussian and given by

1.7 ¥(t,0) = p, exP(-tz/Eri)

then at range r the pulse will have width T given by the relation

2.2, 2
1.8 T =T+ 28“r /“ro .

This formula will be used later. For now, the main feature to notice is that the

parabolic spproximation is not concerned with the asymptotic limits r + « or
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w, + © gs in stationary phase approximations, but is instead concerned with the limit
Am/wo + 0 , where Aw ~ 1/1’O is the bandwidth of the function A(w) . Thus the descrip-
tive phrases, "narrow band approximation", "slowly varying envelope approximation",
and "parabolic approximation" are all synonymous.

Returning to the problem of sound channel propagation, we shall meke use of &
"nerrow band of angles aspproximation" to derive & parabolic equation for the acoustic
field by following an analogous procedure. We shall deal with the case of a stratified
ocean here to clarify the main ideas, and later in Section 2 will derive the parabolic
equations for more realistic oceans. It is well known that the acoustic pressure due
to a source of frequency w can be represented by a sum of propagating normal modes

at distance kor >> 1 in the form:

i (kmr-wt)

b

M
1. (z,r) = A W (z)
9 plz,r mzl m 2 (kmr)l/2 e

where the Wh are eigenfunctions of the "depth equation”,

2
1.10 2+ (k%0P(z) -5 =0,
dz °
k, = w/c0 , nl(z) = co/c(z) » and the k  are eigenvalues (and radial wavenumbers).

The acoustic index of refrection is n(z) , the sound speed is c(z) , and e, is some
particular value of the sound speed chosen for convenience. Since n{z) differs by

only & small amount from unity in the ocean, it is useful to introduce

1.11 v(z) = 1-n2(z)
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and
K, = ko(l-sm)l/ 2,
Then (1.10) becomes
i S
1.13 ;2—- +k_[e -v(z)W =o0.

Since |v(z)| g .0k in the water column, it follows that also [e | s .04 . Thus the
allowed values of em lie in a narrow band snd we may expand the expression on the
right of (1.9). Retaining only the leading term in the exponent and neglecting €

in the coefficient yields

1 i(kor-w'c)
1.1k p(z,r) ~ Y(z,r) W e s
and
kO
M -i—=—er
1.15 W(z,r) = | A W (z)e 2w

As before, we now differentiate (1.15) with respect to r and use {1.13) to obtain the

parsbolic wave equation,

1.16 i kL
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This is the prototype equation of the parabolic approximetion in undei water acousties
{see Appendix A for further discussion of past and current usage).

Of course in this idealized example the parsbolic epproximation offers little
advantage because the most effective way to solve (1.16) is to separate varisbles
and one then returns to (1.15) and {1.13) and it is rather pointless to make any
approximation at all. The real power of the parsbolic equation method resides in its
ability to handle the more realistic oceans thaet have horizontal veristions of sound
speed, water depth, etc., This example does, however, give some insight into the
validity of the parabolic approximation in more general cases.

It i1s clear that the approximation is better, the more narrow the spread of the
€ This depends largely on the source excitation functions Am' If only e single
mode is excited, then one can choose e, such that e = 0 for that mode and there is
no error, If only a few modes are excited then one can estimate errors by examining

the expansion

1/ 2r

O%H

; ; ; 1 2
ikr ik (1-€) ik (1-Ze - ge )r

1.17 e = @ = e .

For each term in the sum, the first neglected term in the exponent gives rise to a
phase error

ko 2

1.18 A¢m i

More important is the relative phase error between two modes that are strongly ex-
cited. Using the eigenvalue estimate obtained from a quadratic well of width B,

£, ~ m(Ac/co)l/g/koB, we find that

|A¢m - A¢m,l ~ (m2 - m'g)Ac/co(r/koBe).
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Thus an optimistic limit of validity is
2
1.19 r <k B/(Ac/e ) ,

for two adjecent modes. At 100 Hz, using B = Zkm, Ac/cO % .04 , we obtain
k
1.20 r ¢ 10 km .

More generally, there will be a large number of modes excited and one cannot expect
the parabolic approximation to be pointwise accurate over the large range given by
(1.20). Moreover, other neglected oceanographic factors (such as random sound speed
fluctuations) will destroy the possibility of pointwise accurate predictions of
acoustic fields long before the above limit. Typicﬁlly, significant random point-
to-point fluctuations are observed at ranges of & few convergence zones. Thus the
most one can try for is that systematic errors be avoided at large ranges.

Another point is theat there are many parsbolic approximations that are asymp-

totically equivalent to (1.16), which we first rewrite as

2 k
1R ra P fan-o.
o Zz

1.21

Since the derivation of this equation required that |n2—l| << 1 , it is clear that

we may equally well replace %{nz-l) by n-l to obtain

gé% + kO{n(z)-llw =0 .

Pt
wug

1
1.22 r ¥ 5
<

e X]

Eq. (1.22) has the advantage over (1.21) that when there is no z dependence (unrealistic)
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the phase agrees wilth the WKB expression., A dissdventage is that the eigenfunctions
do not agree with the true eigenfunctions for a straetified ocean, as is the case for
(1.21). Other possible equations asymptotically equivelent to (1.21) are obtained

by replacing ko by kon(z) in the second term giving

2 k
£ 1 Ty o, 2
1.23s i ¥t §§;ETQT " + 5—{n (z)=1l¥y =0, or
1.23b i, 1 —82w+k[()l] =0
* ar Ekon(zs 522 QLR ¥ = 0.

The product kon(z) does not depend on the cholce of e, and may possibly be an advan-
tage. However, since n must be close to unity for any of these equations to be a
valid spproximetion, there is no theoreticel reason to prefer any one of them over
the many other possibilities. In section 3 we shall derive parabolic equations

that are genuine improvements, and are not asymptotieally equivalent to those given
here. In any case, it is clear that there are many psrabolic equations that can
serve as useful approximstions. The common element in all such eguations is the
slovly varying envelope and narrow band approximation.

Since (1.21) is s wave equation, one can obtain e geometrical acoustics approx-
imation directly from this eguation. By comparing to the exact geometrical acoustics
equation, one gains further insight into the nature of the pearsbolic approximation
and one especially sees that it is & small angle approximation. For a horizontelly

stratified ocean, the exact ray equations are

2

1.24 L2 -1 2320,
dar 8
where = = n(z) cos® = const. , and dz/dr = tan® . The constant s is called

Snell's invariant.
Of the meny ways to derive the corresponding ray equations from (1.21), we shall

proceed by writing the envelope ¥ in polar form in terms of & real emplitude and
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phase:
i¢(z’r> .

1.25 V(z,») = Alz,r)e

Substituting (1.25) into (1.21), equating separately the real and imaginary parts to

zero, and defining

1.26 8(z,r) =

yilelds the pair of equations:

2
1.27a —g%- +5§z-(8ﬁ.2)=0,
2
20, 40 .2 (L2 120 2%
1.27 e O =3 (Br(E)) ¢ 2k2§‘z”(A 8zz)'
[«]

Fgs. (1.27) are exactly equivelent to {1.21), the last term on the right of (1.27b)
describing diffractive effects. Geometricel acoustics is obtained by teking the
formel limit ko + w o in which case this last term drops out. Eq. (1.27a) then

states that the acoustic power A2 is transported along the characteristics,

1.28a %= 6.

Thus 6 is the {small) angle with respect to horizontal. Eg. (1.2Tb) becomes
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1.280 L - L6 .

Combining these two equations gives an equation of the same form as {1.2hL) except

that

&
=

»

1.29 s

In order that s be near unity we need thet n » 1 and 8 << 1 (recall that s = n cosb).
This gives a succinct statement of the conditions for the validity of the parabolic
gpproximation, provided the acoustic frequency is high enough to Justify the use of
ray equations. It may slso be noted that for any specified ray, {1.28) can be made
exactly equivalent to (1.2L4) by a simple rescaling of the range varieble: r = r'/s .
However, this scaling depends on the angle of emission of the ray so one cannot uni-
formly rescale an entire family of rays. Thus the small angle condition is still
necessary.

The above geometrical acoustic analysis together with the preceeding normal mode
analysis shows the main reason why the development of small angle, or parsbolic
approximation methods arrived so late in the history of underwater acoustics. Namely,
for stratified oceans this approximation has very little to offer because it does not
lead to any significant simplification. The ray equations in the small angle approxi-
mation have the same form as the exact equations, and the normal mode equations in
the small angle approximetion require the solution of the same eigenvalue problem as
the exact equations. For range dependent environments, the situation is quite differ-
ent. One no longer has Snell's invariant, and instead of (1.24) the exact ray eque~
tions teke a much more complicsted form with several direction cosines that must be
recomputed along each ray. In the small angle approximation, however, one obtains

a simple generalization of {1.28):
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2
a“z _ 912
1.30 ;;5 = 5;{5n (z,2)] ,

where now the index of refraction n depends on both z and r . Eq. (1.30) should be
useful in numerical ray tracing studies just as the corresponding parabolic wave
equation has already proven its utility.

Finally, it may be worthwhile noticing that the geometrical acoustics approxi-
mation, Just like the parabolic approximation, hes errors that accumulate with range.
To estimate this error, let us neglect the other error associlated with the small
angle approximation and examine the error due solely to neglect of diffraction. The

relative magnitude of the neglected term in (1.27b) is

2
1.31 —é—% 21 2 "iz ,
koA dz ko(Az) F

where we have used the previously obtained estimate of the vertical scale of amplitude
changes near convergence zones, and F is the Fresnel number, F = koBz/R . In one
convergence zone period, the relative error in ray position is thus of order

P2 . Rz/kgBh , or sbout 10-h at 150 Hz and 1072 at 15 Hz. This error also shows up

as s displacement of the focal plane of an ideal thin lens. Using the uniform medium

parabolic equation,

Q2
L:—“’
1

(@)

N

oy , 1.
1.32 i'Bi-_+ 2ko

Q
]

with initial condition

{2~z )2/2132 -ik {z-2 )2/2R
1.33 ¥(z,0) = e 8 e ° % ,
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one easily calculates that the distence to the focal plane is R(l+321'k§Bh)Tl which
is slightly less than the distance predicted by geometrical acoustlics. Thus ray-
trace predictions of the location of convergence zones are always slightly in error,
the error becoming larger the greater the range and the lower the frequency. FParabolic
approximations are therefore not unique in having errors that accumulate with range.
The main features of the SOFAR sound channel that mske possible long-range over-
the-horizon ocean acoustic propagation have been outlined. Within a horizontsl dis-
tance from a low-freguency source equal to a few ocean depths, the acoustic energy
propagating at angles greater than the bottom limiting angle is stripped sway by
lossy bottom interactions leaving only trapped waves propagating at small angles
with respect to horizontal and giving rise to predominantly cyclindrical spreading.
The natural approximation appropriate to this particular geometrieal configuration
was shown to be the small angle, narrow band, parsbolic approximation. The discussion
was centered around stratified oceans, end (1.21) was shown to be the fundamental
equation of the parsbolic approximation method in this case, In the next section we
shall derive a nutber of more general parsbolic wave equations that extend the method

to & greater variety of oceanic environments.

2. Derivations of Parsbolic Eguations

The preceding section dealt heuristically with the parabolic equation method in
the overly ideslized spproximation of a horizontally stratified ocean. 1In this section
we shall strengthen the foundations of the parsbolic approximetion by providing several
alternative derivations and shall further extend the method to include horizontal
variations of sound speed, volume absorption, ocean depth, as well as azimuthal
(oceanic front) effects, several time-dependent effects, and randomly fluctuating
oceen effects. The emphasis will consistently be placed on the derivation of approx—
imation model equations. It is understood that the problem of solving these equations
for realistic ocean enviromments rightfully belongs,in this era of high-speed digital
computers,to specialists in mmerical analysis and computer science. Let it guffice
to say that parsbolic wave equations have proven to be remarkably well adapted to

efficlent machine calculation., This is mainly because they belong to the "marching”
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elass of partiel differential equations, i.e., algorithms can resdily be devised for
the solution of equations of the type of (1.3), (1.6}, (1.16), (1.21), ete., in
which the acoustic field is advenced one step at a time in range using only informa-
tion sbout the field st previously computed renges [58-62]. In addition, one solves
for the slowly varying envelope function itself, and thus computations do not have to
be done on the scale of wavelength. This makes feasible the numericsl solution of
underwater acoustic propagation problems that would be quite impossible with present
generation computers if one had to solve directly the elliptic reduced wave equation
or the hyperbolic acoustic wave equation. Thus the primary motivaetion behind pera-
bolic approximation methods is to meke controlled relisble approximations right at
the beginning of the analysis in order to obtain approximeste equations which, even
though they may not be analytically soluble themselves, are especially well adapted
for efficient high-speed machine calculations.

We shall begin with the case of a fixed monopole (point) source radiating a
single frequency in an ocean whose acoustic index of refraction depends on the three
spatial coordinates but not on time. We actually have in mind, of course, the situa-
tion where the temporal verietions of the ocean are so slow that we may neglect any
chenges of sound speed during the time it takes an acoustic signal to propagate from
source to receiver. Thus the time t appears in the index of refraction as a parameter,
but we shall not explicitly display this dependence. This approximstion would apply,
for exemple, to diurnal variations of acoustic velocity. Also, we shall at first
neglect variations of the fluld density and later put this effect back intc the model
as an effective index of refraction. We shall use the cylindrical coordinate system
showm in Fig. 2: =z 1s the depth measured downward from the surfece, r is the range
measured horizontally, and ¢ is the azimuthal engle (bearing) measured from an arbi-
trary reference direction. The governing equation is then the reduced weve equation

for the acoustic pressure p:

2.1a Ap + ki[ng(z,r,¢) + iv{z,r,$)dp = _hnpos(;) .
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2 2
=22 .3 ,3p, 137D
2.1b bp ror® or * 2 * 2 ,..2°
3z r- 3¢
+ 1
2.1c §(x) = 6(z—zs) i &(r) .

Also, k = w/c  , w is the angular acoustic frequency, n(z,r,¢)=co/c(z,r,¢) .

¢, 1s a normalization sound speed, and v(z,r,) is the volume gbsorption coefficient.
The source strength is P, (the pressure at unit distance) and it is located at r = 0
and depth Z_. One of the basic problems in undervater acoustics is to solve this
equation for the acoustic field p(z,r,$) given the functions n and v , and subject to
boundery conditions at the surfece and bottom.

Since, ag will be seen, the parabolic approximation does not alter the surface
or bottom boundary conditions, we do not need to dwell on this aspect of the problem.
The surface boundary condition is the usual "pressure-relesse” condition
plzlrs¢),r,¢) = 0 , where g{r,$) is the displacement of the surface from the mean
level z = 0 . 'The boundary condition at the bottom is more difficult to specify in
methematical terms because it depends on how much effort one is willing to spend on
modeling propegation through the material layers underlying the ocean floor and on
how much one belleves these effects influence the acoustic slgnals at the desired
range and locetion. Physically, the bottom often consists of deep layers (meny
wavelengths thick) of sediment which behaves acoustically like a fluld with sound
speed close to that of water but with much greater volume loss. Acoustic signals
propagating at very steep angles may penetrate the sediment layers and then propagate
through, and possibly be reflected by, layers of soft (limestone) or hard (granite
or basalt) rock. In any case, waves that penetrate sufficiently deep into the sub-
bottom layers do not return to the water with enough strength to contribute signifi-
cantly +to long-range propagation and should be removed from the calculetion. This
effect 15 modeled by meking v(z,r,$) increase rapidly for values of z much greater
than the depth of the ocean and then cutting off the calculational domain at a depth

where the acoustic field has been reduced to & negligible amplitude.
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Since (2.1) is elliptic, we also have to give a boundary condition on some
vertical boundary surrounding the source, This too is difficult to specify because
the ususl outgoing radistion condition does not epply to an ocean with horizontal
variations. Here we encounter a feature of the parsbolic approximation that did not
arise in the discussion of the previous section, namely, that this approximation
gutomatically eliminates backscattering and reverberation. That is, within the para-
bolic approximation there is no coupling between outward and inward propagating waves
5o we do not need to be concerned with a boundary condition on a vertical surface.
Although this simplifies the formuletion of the acoustic medel, it also leads to an
gdditional error which one would sometimes like to avoid. We shall show later how a
first order correction can be added to the parabolic equation method which allows the
caleulation of reverberation.

Let us now proceed to derive the parabolic wave equation from (2.1). As dis-
cussed in Section 1, the main idea is that to leading order all significant acoustie
waves in the ocean at low frequencies are propageting primarily in the horizontal
direction awasy from the source. Thus the acoustic fileld msy be represented as an
outgoing Henkel function Hgl)(kor) which is slowly modulated by an envelope function

that depends on depth, range, and azimuth:
= P ) (1)
2.2 P(z;ra¢) = Y{z,r,d HO (kor) .

This is expected to be a good approximation only in the far field of the point source

where kor >> 1 and

ik »r
(1) ; 1/2 %o

2.3 H (kor) ~ (2/11Tk0r) e

Substituting (2.2) into (2.1) and omitting the source term because (2.2) is not ex-

pected to hold in the immediate neighborhood of the source, we obtain without further

gpproximation:
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2

¢2

&

Ay e 1w, 2
o L1 v, 1
+LZJ.S ar + r] 3r + az2 + r2

Q2

2.4 + %2 [0%(z,0,0) -1 + 1v(z,7,¢) Wy =0 .

We now meke the far fleld spproximstion, kor > 1 , and note from (2.3) that

. 1) L
0 1. 1
2.5 ;TET w3 21k [1+ o(kara) 1 .
[+] o)

Neglecting the term of order (kor)'2 , we obtain

2 2 2
2.6 2, oq X, 88,13, 22 uvlp=0.
or? odr T2 @ o

We will leave aslde for the moment the problem of connecting the sclution of this
equation to the field near the source (the source modeling problem), and continue
with the main approximation needed to obtain the parabolic wave equation. The re-
quired step is clearly to neglect the term azw/arz compared to the term Qiko /or .
The way hes been prepared in Section 1 for this step and later in this sectlon we
shall further analyze the nature of the error committed in meking this spproximation.
For now, it is enough to note thet 1if the msin radisl dependence of the acoustlc
field is exp(ik or) for some choice of k_ , then the envelope Y will vary slowly as a
function of r on the wavelength scale, i.e., 3y/dr << ko\p and the neglect of azxp/arz
is justified. Neglecting this term in (2.6) yields the fundamental equation of the

parabolic equation method in underwater acoustics:
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2 2
2.7 oq S, B, LY, k202 (2,r,0)-1+1v(z,r,6) 0 = O .
o or 822 r‘? 8¢2 0

Once the field is specified at some range r, (2.7) can be solved as an "initial
value problenm” by advancing the solution outward in range. The boundary conditions
in z were discussed earlier and the solution is periodic in the variable ¢ . Thus
we heve an acoustic model thet allows for varistions in sound speed and volume ab~
sorption in all three dimensions, and also allows for varieble surface height and
ocean depth. There are a varlety of numericel schemes that provide rapld and accurate
solutions to parabolic equations of the type (2.7). As discussed in Section 1, the
main sound channel will cause the envelope function ¥ to vary on the vertical scale
Az ~ lof/‘n' and horizontal scale Ar = Xole‘n’ , Wwhere 7\0 = 211’/1(0 is the nominal scoustic
wavelength and £ ® R/2B ~» 6 is the typicel f-number of the sound channel., How rapidly
¥ varies as a function of ¢ will depend on n and v . Also, rapid variations of n and
v {or the boundary conditions) will induce corresponding variations of Y. It is al-
most universally true that oceanic varietions are much more gradusl in the horizontal
coordinates than in the vertical coordinate. Thus the resclution needed to solve
(2.7) will be as stated above and 1s much longer than the wavelength scale.

Other simplifications of (2.7) are also of considersble practicsl use., Far from
the source, the curvature of the cylindrical wavefronts can be neglected and the azi-
muthal coordinate in (2.7) csn be replaced by a locally cartesian coordinate dy = rdy

to give

2.8 211;0 W, 3y,

2 2r 2
I 2 * ko[n (z,5,r)-1+iv(z,y,r)Jy = 0 .

2%

This equation is especially useful for calculations with relatively narrow beams,
which are of interest in comnection with horizontally extended receivers which select
only & nerrow band of directions, or for sources which have a directional radiation

pattern.



244

The most widely used parabolic wave equation in underwater acoustics results
from (2.7) when the azimuthal derivetives of { are neglected. This does not mean that
the field is assumed to be cylindrically symmetric (which would be absurd for realis-
tic ocean propsgation to long ranges), but rather that the variation of the ocean in
azimuth is so gradual that we may neglect scattering from one szimuthal direction to

another. We then obtain

2
APy oy 2¢ 2 _
2.8 ik 5=+ o2 + ko{n {zyr)-1+iv(z,r)JP=0 ,

where the dependence of n and V on ¢ has been suppressed Just as we earlier suppressed.
their actual dependence on time. In practical spplications, one will of course choose
the functions n and v {(which also contain the information about bethymetry) to corre-
spond to the particular bearing, time of day, season of year, etc., for which one
wants to know the acoustic fieid.

We now turn to the problem of source modeling, i.e., obtaining initisl data for
(2.8). There are many ways to get initial dete, the best belng to solve the full
elliptic wave equation in & small region containing the source and extending out
geveral wavelengths in r from the source to the region where the parabolic equation
becomes valid. If the ocean can be assumed to be exactly stratified near the source,
then this solution can be obtained by separatlon of varisbles and calculeting the
normal modes (including the continuous spectrum which can be important near the source).
In many spplications, however, this procedure is unnecessarlly complicated end & much
simpler prescription suffices. This is because one only cares about the energy that
is injected into the sound channel and propagates to long ranges. If the source is
seversl wavelengths from any boundary, then we know that near the point source the
field will be a spherically spreading wave,
ho) ikoR

2.9 p=ge ,
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where R = [r2+(z-zs)2]1!2 s, Assuming that this solution holds out to a range r such

2.10 k; << r << B,

where again B is the width of the sound channel (or roughly the scale length of the
thermocline), then we know the field et a range where the parabolic approximstion is
valid but before any significent refraction effects have occured. In this "overlap"

region, (2.8) becomes simply

2
2.11 o 2,3V,
o Or az2

and from {2.2) and (2.3) the pressure is

ik r
2.12 plr,2) = ¥lz,r) (E/iﬂkor)l/Qe °

Comparing (2.12) to (2.9) and msking small angle approximstion, lz—zsl/r << 1, to
second order, we see that in the region defined by (2.10) we want ¢ tc have the

spproximate form

(z—zs)z iko(z—zs)zler

}1/2 5 1 e .
Y

1
{1"'2

2.13 Plz,r) = p (imk /2r

This can be achieved by starting at r = 0 with a source extended vertically and de-
signed to produce the field in {2.13) when k r >> 1 . The simplest such source, and
one which does not produce spurious sidelcbes, is

2, 2
2.1k v(z,0) = ne~{22 )W
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2,1ka A

pDiJE?w

2.1k W

2/k = Aolm’z' .

To show this, we solve (2.11) with initial condition (2.14) to get

X% (z-2 )/
215 Ylzor) = p (1 kolar)l/2 YA oV 2=z ) /hrs

2 jis 1 -l 2
X o i[ko(z-zs) /ors + T - Sten (Qr/kow )]

and s = 1+k§wl‘/hr2 . If kv = O(1), then in the far field, kr >> 1, we have s ¥ 1

and (2.15) becomes

22 2 2
2.16 Wz,r) = pQ{i kolar)lle o k¥ (z-zs) [

ik (z-2z y2/or
x ° s
e .

Comparing this to {2.13), we see that the behavior is correct when =z = z_, the phase
is correct, and the &istribution of intensity in depth willl be correct to second order
in angle provided w is chosen according to (2.14b). This prescription has been found
to work quite well in practice in the sense that near the source in the forward sector
of angles, the intensity |p|2 decreases proportional to :t"'2 (and the transmisaion loss
is 66.13 dB re 1 yd at r = 1 nml), while at greater ranges one observes a general
trend toward a r-l decrease.

Recalling that P, represents the pressure of the polint source et unit distance,

which we call roos the conventional expression for transmission loss is
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10 log,, | ip(z,r)fzf(palro)e ]

2r2
10 log, [ 02 lw(z,r)la 1.

'IYKOX‘PQ

This expression is clearly independent of P, » and insertion of the short-range field
(2.13) shows that TL would vanish at r = r, if that formula held at such a short range.
By convention, in the U, S. we usually take r, = 1 yd.

Although one may slways use the principle of linear superposition tc compute
acoustic fields from sources that are not point radietors by adding coherently many
fields with sources as prescribed above, it 1s more convenient In practice to directly
model the distribution of radlsted ascoustic energy from the actual source. Since
these distributions are conventionally specified in terms of the far-field radiation
patterns, and this is Just what is needed to begin the integration of the perebolic
wave equation, we see that the parabolic equation method is readily adapted to handle
a general class of sources (such as directional radiators, ete.). It should also be
mentioned here that in practical calculations one usually interchanges the source
and receiver, making use of the principle of reciprocity. Thus, for example, if a
gsource moves in range with respect to a fixed receiver and if the environment is
range-dependent, one would naturally begin the calculation of acoustic fields at the
receiver end march out in renge toward the source, thereby avolding the necessity for
recomputing the field at each different range to the source. In addition, what was
said above about modeling extended sources applies equally well to modeling extended
receivers that have directional propertiles.

As in other physical sciences, the ultimete validetion of an underwater acoustic
model must depend on comparisons £o experimental dats. Computer programs based on
the "split-step Fourier" algorithm [35-40] have been implemented in several
laboratories in order to obtain solutions of (2.8) and make comparisons to ex-
perimental data. These tests have shown that the parabolic equation method

performs at least as well as other models for low frequency, deep-ccean, long-range
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acoustic propagation and sometimes does extrsordinarily well, especially in strongly
range-dependent environments where other models have great difficulty.

Figures 3 and 4 show an example of such a comparison. The data in Fig. 3 was
taken by T. Talpey in the North Pacific [63]. The source was a calibrated sinusoidal
projector with nominal frequency of 1hh4 Hz towed at a depth of 280 ft. moving along
a certain radial bearing from a fixed receiver at s depth of about 4290 ft. The data
shows three convergence zone peaks at ranges of 34, 66, and 97 nmi (the last being
split into two distinct sub-peaks); and also shows two lower more diffuse peaks at
ranges of about 50 and 82 nmi. The diffuse peaks were interpreted as being caused
by reflections from the ocean floor. The sound speed profiles and ocean depths were
accurately measured along the track, and were used ss input (together with assumed
volume loss functions) to a computer code that solved (2.8) and calculated the
trensmission loss according to (2.17). This numerically calculated result is shown
in Fig. 4 on the same scale as Fig. 3. The three convergence zone peaks are seen
to he accurately predicted both in amplitude and range, as well as the secondary
diffuse peaks which were confirmed to be caused by reflections from the multifaceted
sloping ocean bottom. Discrepancies do appear in the shadow zone regions, but the
transmission is so poor here that it has no practical consequences. The success
of the parabolic eguation method in this challenging example gives support to its
usefulness and reliability in practical underwater acoustic problems.

0f course, a much greater number of such comparisons in a variety of environ-
mental conditions mre needed to thoroughly validate this acoustic model and to deter-
mine its range of validity. Admittedly, there are circumstances where this acoustic
model has not performed as well as in the above example. For instance, the prediction
of transmission via bottom reflected paths that do not lie in a vertical plane (due
to tilted bottoms) clearly requires a three dimensionsl caleculation.

Another successful parabolic equation calculation is shown in Fig. 5, which is
also concerned with acoustic propagetion in the North Pacific Ocean. Along a meridian
st sbout 170° W, the east-flowing Kuroshio Current (about 42° N) merks e separation
between cold sub-arctic water end a more temperate body of water characterized by =
double thermocline. Propagation across this oceanic front,which is about 625 nmi

south from an assumed receiver,results in an enormous (40 dB) decrease in transmission,
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as shown in the numerically computed transmission loss curve of Fig. 5 for a source
at 300 £t. and frequency 50 Hz. The cause of this drop in transmission is clearly
the "impedance mismatch” between the two different sound channels separated by the
oceanic front.

Next, we present some graphlcal computer plots of acoustic fields that were made
for their pedsgogical (and possibly artistic) velue. In the first sequence, Figs. 6
to 10, the sound speed profile was teken to be bilinesr in order toc mske the ray
tracing easy to perform and to display the structure of caustics, shadow zones, and
convergence zones in an idealized case. The gradient of sound speed, g = dc/dz (with
z increasing downward from the surface at 2z = 0), is given by: g = - .0k sec_l between
0 and 4000 ft. (axis of the sound channel); and g = + .02 sec™T between 4000 £t. and
16000 ft. (bottom of the ocean, assumed flat)}. The bottom layers were taken to be
very lossy to eliminate bhottom bounce paths and simplify the interpretation of the
acoustic fields. The source (at left edge in all plots) is 2000 ft. deep and the
horizontal scale extends to 80 nmi in all plots. Fig. 6 is a ray diagram of this
case which was made by R. L. Holford [64]. Cusped caustics can be seen at the con-
vergence zones at the source depth (2000 ft.) and between the convergence zones at the
reciprocal depth (8000 ft.) of the source. Sharply defined shadow zones are also seen.
Solutions of the parabolic wave equation for the same case are depicted in Figs. 7 -~
10 at fregquencies of 25, 50, 100, and 200 Hz, respectively, The upper plot shows
detailed contour levels of acoustic intensity (I@]e) in the range-depth plane. The
lower plot is a smoothed and simplified version of the upper one. It shows two con-
tour levels of {plz corresponding to transmission losses of 80 4B {(re 1 yd) and 90 4B
{re 1 yd). The regions where the transmission loss is greater than 90 4B or less
than 80 4B are shaded, while the region between 80 and 90 dB is left white. These
plots show clearly the complicated interference and diffraction effects that are
fully described by the parahbolic wave equetion but sbsent in ordinary ray training.
To extend the geometriceal acoustic approximation to take into account all of these
effects would not appear to be a very practical approach, although it must be admitted
that at the higher frequencies (200 Hz) the isolated caustics occurring at the first

convergence zone may be adequately handled by such methods in this idealized case.
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Figure 7. Bilinear profile, parabolic equation, 25 Hz.
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Figure 8. Bilinear profile, parabolic equation, 50 Hz.
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Figure 9. Bilinear profile, parabolic equation, 100 Hz.
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Figure 10. Bilinear profile, parabolic equation, 200 Hz.
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Note, however, that at 25 Hz the caustic structures sre so diffuse and overlapping
that they sre hardly recognizable. It is also Instructive to note, while compering
Figs. T - 10, that the shadow zcnes are progressively being filled-in by diffraction
effects at lower and lower fregquencies. This, of course, is a well-known and experi-
mentally observed effect.

Finelly, we present three examples, Figs. 11 ~ 13, of acoustic propagstion in
the presence of an idealized sea-mount {or ridge), with W. Munk's canonical sound

speed profile [427:

2.18 elz) = cA[l +€ln -1+e ™I,

3
it

2{z - zA)/B .

In these examples, c, = 1500 m/sec, € = 00Tk, and z, = B = 1.3 km. The floor of the
ocean is at a depth of L.5 km and the computational domain extends down to 5.0 km.

The sea-mount rises halfwaey to the surface, or 2.25 km above the floor. The total
horizontal range in all three examples is 400 km, and the frequency is 50 Hz, The
plotting format is the same as in the previous examples except that the conbour levels
in the lower plot are 90 and 100 dB. 1In Figs. 11 and 12 the bottom {including the
sea-mount) is again made very lossy so thet all acoustic waves that interact with

the bottom are completely attenumted. In Fig. 11 the source is 1.0 km deep, or
slightly asbove the axis of the sound channel (et 1.3 km). It is seen that the effect
of the sea-mount is 4o strip awasy the larger sngle paths, leaving the near-axial paths
virtually unaffected. This transmission down the axis is quite good, but not to a
receiver near the surface {(or vice versa). This is seen clearly in Fig. 12 where

the source is now near the surface, 0.1 km deep. Propagation is by means of deep-
cyeling RSR paths, which are intercepted and absorbed by the sea-mount leaving almost
no measursble acoustic signal. The last example, Fig. 13, is the same ss in Fig. 12
except that the bottom is now not at all lossy, so that the reflection coefficient
would be given by the Rayleigh formula. The critical angle in this case is about

10° at the ccean floor at 4.5 km and becomes slightly more on the sea-mount because

the sound speed of the bottom material was held constant. One observes that
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Canonical profile with sea mount, deep source, soft bottom.

Figure 11.



Figure 12. Canonical profile with sea mount, shallow source, soft bottom.
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Figure 13. Canonical profile with sea mount, shallow source, hard bottom.
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steep-angle waves refract and penetrate the bottom where they are eventually absorbed,
whereas shallow-angle waves sre totally reflected back into the water. The result is
that transmission across the seas-mount iz quite good, except that receivers near the
bottom are screened by the sea-mount. One mey alsc observe the sub-bottom region
where the penetreting waves are artificially absorbed to prevent these waves from
being reflected back into the water.

Numerical solutions of the parsbolic wave eguation produce in the course of
solution full two dimensional acoustic fields; therefore contour plots of the above
type require few additional calculations beyond those needed to solve the wave eque-
tion itself. When more reslistic sound speed profiles, bottom depth profiles, and
volume loss functions are used in such numerical calculations, one obtains as output
not only transmission loss curves (such as shown in Fig. 4) whose numericsl values
can be compared directly to experimental data, but elso plots of acoustic fields which
give insight into the characteristics of acoustic wave propagation in realistic ocean
environments. Thus one is in the enviable position of having & computer code that
produces both insight and numbers, thereby confounding the aphorism that "the purpose
of computing is insight, not numbers" [65].

Before ending this section, we shall discuss two additional effects - variable
density and earth curvature -- that were not included in the model described above but
which can be added with little additional effort to gain a somewhat greater degree of
realism.

In a fluid with given varisble density p, the reduced wave equation for the

acoustic pressure p is:
1 2
2.19 pV'(‘p‘ Vp) + %5 p =0,
c

where as before ¢ is the varisble sound speed. It is well-known [30,31]

that the replacement,

2.20 q = p/vp,
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transforms eq. (2.19) into the standard Helmholtz form of the reduced wave equa-

tion:
2
2.21 Ag + koneq = 0,

vhere k. = w/c_, and the "effective" index of refraction is given by

O [+ 34
2
a_°2, .1 1 3 (py2
2,22 n” =5+ 5 [5h -5 (5]
c 2k,
c
= (c—o)2 v L gty (073 %),
2k°

o]

The previous derivation of the parabolic wave equation can now be repeated (after

inserting a volume loss term iv which may now depend on density) by setting

1)
2.23 =y Hi (k.r),
and obtaining
- 2 2, 2
2.2k 2ik, wp + VY + ko(n ~1+iv)y = 0,

which is exsctly the same as (2.6) or (2.8) except that n is now given by (2.22).
A word of caution should be given concerning the use of this variable density

model in ceses where the density changes discontinucusly. We see from (2.22)

that large gradients in p will make the effective index of refraction change by
large amounts, and yet the derivation of the paraboliec wave equation requires that
n2 be nearly constant. In order to use this model in numerical simulations, one
must therefore "smear out" the changes in density. However, to retain the correct
scattering from density variations, one must not overdo this smearing. Consider,

for example, a density profile that changes suddenly from Py to Py at the bot-

tom of the ocean. A possible analytic expression for the density is

2.25 p(2) = 5o +0,) + 3(pppy Jbann(3),
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where L is the verticel distance over which the density changes. In order thet
the reflection from this density Jump be correctly modeled, L must be small com-

pared to the vertically projected wavelength, or
2.26 K12 sin® 6 <<1,

where O is the angle of incidence (with respect to horizontal) and is usually
very small. On the other hand, to avoid large values of n2, (2.22) shows that
L must be chosen such that

2.2 Ps=P1
2.27 XL >
o PP

Both conditions can be satisfied only if IGI is small and |p2-pl| is not too
large. Fortunately, this is the situation which commonly occurs in practice. For
exemple, if || < 10° and I(pz-pl)/(p2+pl)| < 1, then the choice kL =2 pro-
vides an adequate and useful spproximation. One should not worry about making L
depend on acoustic frequency because this model, if properly implemented, will en-
sure that the acoustic waves behave as though a discontinuity were present. It may
also be worthwhile mentioning here that hydrophone sensors respond to the flux of
acoustic energy which is equal to |p|2/pc = |q|2/c, so that computations of trans-
mission loss with this model do not have to be renormelized with density ratios.
Lastly, we consider the effect of earth curvature on long-range acoustic
propagation in the ocean. Letting r be the horizontal range from a source and R
be radius of the earth, the mean level of the ocean surface as a function of range
is
2.28 z, =R - (R2—r2)1/2 x r2/2R.
The sound speed profiles are measured downward from this surface, and the two-

dimensional parabolic wave equation becomes

2
3 3 2
2.29 2ik, 5% + g;g + ko[nz(r,z—zs) - 1]y = o.
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We now meke the transformstion

2.30a 2! = z-z_ = z - T°/2R,

ikor(z-rQ/BR)/R
2.30b W(z,r) =P'(z',re .

In the transformed varisbles, the persbolic wave equation takes the form

2
2.31 21k %Yl-+ LA k2 nECr,z’) -1 - 2z'/R]y* = 0.
r 8z'2 o

This transformation shows that, within the parabolic approximation, the effect of
earth curvature is fully described by an additional term in the index of refraction

which decreasses linearly with depth. Thus the effective index of refraction is
2.32 n'2 = n2 - 2z'/R.

Assuming n2 %= )., this may also be expressed as an effective sound speed:

2.33 e'(z',r) = e(zt,r) + coz'/R.

The effective sound speed has an additional term increasing linearly with depth.
Since the gradient of this additional term is co/R z 2.5 % 10_h secﬁl, and since
the gradient of ¢ in the deep ocean has the nearly universal value dc/dz =
1.7 X 10"2 sec-l, we see that the effect of earth curvature is nesrly unmeasurable
because it only modifies the usual deep ocean refraction by about 1%. Furthermore,
the acoustic intensity is unchanged by the above transformation becsuse
!W‘z = Iw‘fz. Thus, although the effect is smell it is easy to include earth curve-
ture in the parabolic equation acoustic model.

In this section, we have developed a versatile acoustic model based on the

parabolic weave egquation and we have illustrated the use of the model in several

numerical celculations. In the next section, we shall re-examine the range of
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validity of the model by formal asymptotic analysis.

3. Asymptotic Analysis

In this section, we shall present some formel asymptotic analysis of the
parabolic epproximstion in the context of underwater acoustics in order to better
understand its range of validity and possibly to increase its scope. We shall con-
sider a two dimensional (r,z) model in which the far-field approximation has al-
ready been made. That is, we set bp(r,z) = u(r,z)//r and assume kor >> 1 to ob-

tain

22 ~
3.1 w.. +u,, +kn {z,v)u = 0.

As before, ko = w/e and n = colc(z,r) is the acoustic index with the dependence

03
on azimuthal angle and time suppressed for notational convenience. We analyze
this equation in two ways: first by means of a formal asymptotic scaling, and

second by means of a factorizetion using pseudo-differential operators.

To use scaling arguments on (3.1), we introduce the dimensionless verisbles

3.2a z! = zko/f,

3.2b r' = rk /f2,

wvhere f is a dimensionless parameter which at present will be left unspecified.
Later, we shall see that f is best identified with the f-number of the sound

channel previously introduced in section 1. Defining the envelope function ¥ by
3.3 u{z,r) = ¢(z',r') exp(ikor),

and substituting this relation into (3.1), we obtain

1 R 2
3.4 ;E'wr'r' vy o+ Y, f (n%-1)p = o.
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Next, we define the function n by

3.5 n2 =1 + n/f°,

and consider the formal asymptotic behavior as f = e, Ignoring for the moment the

question of how 71 depends on z' and r', we make the expansion

3.6 p=v@ ey L@
bl £
and equate powers of fe to get
0)
3.Ta 2”’1(“ + wi?i, “W(o) =0,
3.7 2t oy Lap® - 00

Eq. (3.7a) is the desired parasbolic wave equation, and (3.7b) allows us to estimate

the error mede in neglecting the second, and higher, terms in the expansion (3.6).

)y,

we see that the error will be order unity when r'/f2 ~ 1. Thus we should restrict

Assuming thet at most w(l) grovs linearly with r' [i.e., w(l) ~ 'y
r to the range
3.8 r < fh/k N
-~ [
to ensure that the error is small.
We now must decide how to choose f. Three possible choices will be exam-
ined, and the third will be selected. The conventional choice is [19, 57]

3.9 f = kB,

where B 1s the width of the sound channel; i.e., the scale on which n varies

with depth. This choice makes f extremely large and appears to give a very large
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range of validity according to (3.8). However, this f depends on frequency, and

from (3.5) we see that in general we would have to require that
2
3.10 n = olde/e ) = 0(1/£%) = o(1/k_B°).

Since Ac/co is determined by oceanographic factors and is of course independent
of frequency, we would have to restrict ourselves to essentially one frequency only,

namely,

V= cok0/2ﬂ ~ ey ¢c07Ac /onB ~ 2 Hz.

We conclude that this choice is not suitable for general use. The severe restric-~
tion that we found here arose from the requirement that both the solution and the
coefficient in the parabolic wave equation should vary on the same scale in =z,
namely B. However, as discussed in section 1 and as illustrated by numerical cal-
culations in section 2, the focusing action of the sound channel causes the solution
(the acoustic field) to vary on much shorter scales than the coefficient (the sound
speed profile).

A second special case where both scales can be nicely balanced is the case of

SOFAR propagation in a quadratic profile:

3.11 n

1 - e(2/B)2(1 + Se(z,r)/e ],

e = Ae/e, ~ 1072,

where the term Gc/co << 1 accounts for deviations, possibly random, from the quad-

ratic profile. In this case the appropriate choice of f 1is [20]
2o 1/h
3.12 f= (koB /e)

since (3.7a) becomes
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3.13 inr' + wz'z’ - 212[1 + 6c/co]w = 0.

It may be noted that (3.8) becomes in this case

3.1k r < koB2/€ ~ 10h Jam,

which agrees with the estimate givenm in Eq. (1.19). This is explained by the fact
that the eigenvalue estimates given in section 1 were based on the lower modes of a
quadratic profile (canonical for SOFAR propagation). We must now admit, however,
that the above scaling and estimates are only valid for & very restricted class of
problems and cannot be used for numerical examples presented in section 2 which
clearly have quite different scales in the acoustic field and in the index of refrac-
tion.

We shall now show that the large parameter on which the parabolic approximation

is based should be the f-number of the sould channel. Defining

3.15 n2(z,r) =1 + en(z,r),
_ -2 )
€ = Ac/e, ~ 10 (a fixed constant),
n= O(l),

we conclude from (3.5) that the best choice for f for general applications in

underwater acoustics is

3.16 f=1/Ve ~ 10,

The same choice for the expansion parameter was motivated physiecally in section 1.
The rms angle of propagation is 6 ~ 1/f <<"1, and thus we again see that the para-
bolic epproximation is a small angle approximation. We also note that the scaling
in (3.2) with this choice of f re-affirms the statements made in section 1 about

the scales on which the acoustic field varies in depth and range due to propagation
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in a continuous weakly focusing sound channel. The variation of w(o) with z'

(0)

and r' is order unity if ¥ satisfies

0)
3.7 ety + 80, + el <o,

and 7 is assumed to vaery with 2z on the scale B.

Expressing 7N in terms of z' and r', we find that

3.18 n(z,z) = u(2/B, r/A) = u(gy ="
[+ [=]

Thus in general, n will depend on the additional parameiers, f/koB and fe/koA,
which cannot be sllowed to become large (they may be small). This imposes the con-

ditiomns

3.19 kB>f= 1/¥€, or v > 2 Hz,

which gives the lower limit of validity of the parabolic approximation, and
3.20 A > B,

which determines the allowed rate of change of sound speed with range to be at least
f +times greater than its rate of chenge with depth. Finally, we note that on the

b
basis of (3.8), the range of validity is limited to r € 10 /ko, or gbout 100 km

at 100 Hz. This is a pessimistic estimate because we assumed the worst case, that

w{l) grows linearly in r'. Assuming instead that errors tend to average out and
1 0
that w( ). ' w( ), we would instead conclude that
6
3.21 r<f /ko,
on r < 10“ km at 100 Hz. Experience has shown that this more optimistic estimate

is probably closer to reality if one uses practical measures of accuracy such as
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average (over range) transmission loss, but that if one insists on absolute point-
wise accuracy than the more pessimistic estimate is correct.

Next, we turn to another method of deriving parabelic wave equations which is
based on "splitting" the solution of the elliptic wave equation (3.1) into a sum of
two solutions: one propagating ocutward toward large r, and the other propagating
inwvard toward small r (the backscatted, or reverberant wave). The preceeding
method of derivation, based on asymptotic scaling and expansion, has the disadvantage
that the correction terms must be successively smaller, order by order. Thus to get
the first correction, w(l)/fe, one would solve (3.7a) for w(o), substitute this

(1)

into the right hand side of (3.7b), and solve for @ by marching outward in =r.
If the resulting values of w(l)/f2 are small, one has gained very little (and be-
sides, no backscatter effects are picked up). On the other hand, if w(l)/f2 is of
order unity so that the correction is significant, then the higher order terms in
(3.6) will also be order unity and the asymptotic expansion is no longer useful.

The splitting method to be presented does not have this disadvantage, and it enables
one to obtain corrections valid to all orders as well as a useful approximation for
backscattered waves.

The starting point is again Eq. (3.1) which we here write in the form
22
3.22 (.Q_E + koQ Ju = 0,
or

where the operator Q2 is defined by

2
3.23 Q2 = n2(z,r) + Bz/ki,

and 82 = 82/Bz2. In this and the next few paragraphs, we shall assume that the
dependence of n on the range variable r is so weak (or absent) that we can neg-—
lect 0On/9r wherever it might appear. Later we shall return and pick up these
neglected terms. Because of this assumption, the operator 3/9r commutes with QE,

and we can formally factor (3.22) into two equations:
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8u+

3.24a ior +kQu =0,
du_

3.24b -1 = * k,Qu_ =0,

The full solution is the sum of the outgoing wave (u+) end the incoming wave (u ),

i.e.,

3.25 u(z,r) = u (z,r) + u_(z,r).

We note that in this approximation there is no coupling between u

" and u_. Thus

if wu_ vanishes initially, it will remain zero. Of course, when there is no range
dependence in the index of refraction then this factorization is exact, and follows
from the physically obvious fact that range variastions of the ocean are necessary
to couple outgoing and incoming waves.

In egs. (3.24), @ is the pseudo-differential operator given formally by

3.26 Q= [ng(z,r) + Si/ki]l/z
=[1+¢e+ u]l/a,

where

3.27 €= ne(z,r) -1,

3.28 W

We see that € 1is a multiplication operator and 1 is a differential operator
{which happens to be second order with constant coefficient). The operator § is
called a pseudo-differential operator becsuse, loosely spesking, it is & nonlocal
operator, that is, Qu(z) cannot be expressed in terms of a finite number of deri-
vatives of u at the point =z, The existing mathematical theory of such operators
does not appear to extend to this particular example, chiefly because the radicand
is not positive definite and thus a branch cut needs to be introduced into the

definition of Q. Nevertheless, the proper way to do this is clear from the spec-
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tral decomposition of QE (normal mode analysis): one chooses the exponentially
decaying branch (Im @ > 0) for the outgoing wave, and the opposite branch

{Im @ < 0) for the incoming wave. Thus, strictly speaking, we should use different
expressions for @ in egs. (3.24a) and (3.24b). However, this distinction dis-
appears in the parabolic approximation, and we need not concern ourselves here with
the evanescent modes.

The standard parsbolic wave equation results from a truncation of the Taylor

series expansion of the operator Q:
1 2
3.29 Q=1+ 3lemn) -~ Flem)® + oo

Assuming that both € and U are small, we neglect the quadratic terms in {(3.29)

and substitute the remeining terms in (3.24a) to obtain

. du 1
—F + = &+ m
3.30 i+ k[l + Z(et)lu = 0,
where the subscript on u has been omitted because we shall deal only with the out-
going wave in the next few paragraphs. Using the definitions of € and W given
by (3.27) and (3.28) and making the usual envelope definition wu = Y exp(ik r), we

obtain

k
3.31 i %i—) + 5_1{; aiw + ;0' [ng(z,r)~1]w = 0,
which is the usual parebolic wave equation.

We can now examine the conditions for validity of (3.31) from snother point
of view. We clesrly need [I€I] << 1 and [[ulE << 1 +to meke the local error
smsll. As is often the case with approximations, estimates of cummulative errors are
much more difficult to meke and we shall not attempt to do so here. Now
€ = n2-1 = ci/cz—l is determined by envirommental conditions and by the choice of
Cye Since the sound speed c¢{z) varies by only a few parts in a hundred through

the water column, it is clear how to choose c_ so that [lel] 1s sme1l. For

example, we may define
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3.32 el = [ etz,r)|v|%az/ [Iv]%ez,

where Y is the particular solution of (3.31) under consideration. This "norm"
will depend on r, but it can easily be monitored during a numerical solution of
(3.31) to see whether the parabolic approximation remains good. Since |1}J|2 will
tend to be large at a depth equal to the source depth {(or the receiver depth in case
one begins calculating from there), it follows from (3.32) that a good choice of
e, 1s the sound speed at the source depth since € = 0 at this point and [Tell
will tend to be small. Numerical experience bears out this expectation.

Conditions under which 1 is small are not so easy to state because, strictly
speaking, U is an unbounded operator. However, in the underwater acoustic
applications we are only interested in the effect of u acting on the acoustic field

P at long ranges (r >> B) and here y will vary slowly as a function of depth.

Thus we define the "norm" of W by

3.33 Hull = [ v aa/ | Jvl%a

= [ 132 2
- [l gt e [ 1%,

where, as before, ¥ is the particular solution of (3.31) under consideration. The
physical meaning of |}u|| is the mean square angle of propagation with respect

to horizontal, since 0Y/3z gives the vertical wavenumber and k;le /3z is the
corresponding angle, This "norm" depends on r, and it too can easily be monitored
during a numerical solution of (3.31), for example by using Parseval's relation

and computing it in Fourier space. Therefore we have obtained an internal consistency
check on the validity of the parsbolic approximation: by monitoring the size of ||el|
and ||u||, we can keep track of the relative errors made in the course of a calculation.
This was in fact done in the numerical calculations described in section 2, and
typically it was found that both ||e|| and |[|u|| remained less than about .OL

throughout the calculations. It may also be mentioned that retaining higher order
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terms in the Taylor series expansion of § given in (3.29) has the same disedvan—
tage as with the asymptotic scaling expansion: when the correction terms are small
they are not needed, and when they are large (order unity) then all higher terms
must also be included.

We shall next present a derivation of improved parsbolic equations which re-
gquires that only one of the operators (€ or U) occurring in Q be small, but
the other may be order unity. These equations represent significant improvements
over the standard parabolic equation because they are valid to all orders in one of
the operators € or U. Thus one is able to deel with index of refraction varia-
tions which are order unity in amplitude, € = 0{1), or with propagstion at large
angles, ¥ = 0(1). Of course if neither operator is small then one has no recourse
except to return to the full elliptic equation. The basic idea in the derivation is
the formal operator expansion

/2 _ 1/2

3.34a (A+SB) A + 8C + 0(52),

S

3.3p ¢c= r e"Al/zs Be"Al/esd
]
where A and B are operators {non-commuting, in general), and § 1is a small con-
stant. A formal proof of this relation is easily given by squaring both sides
of (3.34a) to obtain the operator equation B = Al/QC + CAl/Q, and noting that C
as given by (3.34b) is & formal solution of this equation.
We now apply {3.34) to the operator Q given by (3.26), There are two

cases: € small or U small, We first consider W small. Neglecting terms of

second order in U, we obtain

00 1/2 1/2
Q= (1+a)l/2 + j e_(l*e) 8 ue’(l+€) Sas
0

3.36
o 2, 2y -ns
=n+f e™ (57/x5)e™" as.
0 A

In this expression, n = n{z,r) and is order unity. Although this operator appears
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formidable, it is actuaslly easy to evaluate and is in fact a local operator. A

straightforward calculation yields

_ 1 -2ns 22
Qulz) = nu + k2 [O e (uZZ - 50U - 2sn.u +s nzu)ds
3.37 °
1 1 1 n22 Byz
= nu + -l [(; uz)z + ’é‘(x—l—é— - nT)U],
o

where subscripts denote partial derivatives with respect to 2z. We then obtain a
parabolic wave equation for u which is not substantially different from the stan-

dard version. Use of (3.37) in (3.24) gives

2
. du 1 3 ,1 3u 1 Pz Tag
3.38 i s+ s o={===) + k. [n + =2 {— - —)]u=0.
r 2ko 9z 'n 3z [ hkg n3 n2

This equation is valid to all orders in ng-l, and has not previously been derived.
To the author's knowledge, it has not yet been implemented numerically, although it
would surely be worthwhile doing so. It may be noted that this equation is not equi-
valent to any of the modified parabolic equations that were obtained in Section

1 on the basis of replacing (n2-l)/2 by n-l. The exact form of (3.38) would be
difficult to guess by such means. It 1s also worth noting that this improved para-
bolie equation does not depend on the choice of the normalization sound speed Cqe
This is because it may be written in such a way that k (= w/e, and n (= cofc)
elways occur in the combination kn (= w/c) which is independent of e, This
property must of course hold for any equation that is valid for all values of n.

Further, (3.38) conserves the flux of outgoing acoustic radiation:

3.39 F, = J Iu]edz = const.,

which is & reassuring fact.
Although (3.38) is & useful acoustic model ss it stands, some numerical al-
gorithms (such as the one described in [35-38, 49]) for solving such equations are

effective only if the differential operator has constant coefficients, which is
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clearly not the cese for (3.38). Therefore it is useful to transform (3.38) into
an equivslent equation with constant coefficients. This can be done by changing

the independent variable 2z to
z
~ 1/2
3.40 2= ] )1,

and the dependent variable u teo

3.41 2= [n(z)]‘l/uu.

Further, we define the index of refraction in terms of % by
3.h2 m(z) = n(z(z)), or n(z)= m(z(z)).

A straightforward calculation then transforms {3.38) into

~ Do 2
u 1 9%u ~ 1l ,lLam 1 ,9m 2,

3.43 i + =22 4 x [m(z) - =5E S + =(=)")]u = 0.
9T T2k, ;2 O A PN

This equation has the desired form, and it conserves the energy flux since
3.4k F = I ,u‘zdz = j lulzdz = const.

Eq. (3.38), or its equivalent (3.%3}, is in a sense unique in thet it is the
only equation having the form of a parabolic wave eguation which is correct to all
orders in nz—l. Other equations which do not have all the terms contained in (3.38)
have not been systematically derived and cannot claim to be valid for large changes
of the index of refraction.

Next, we exemine the other way of expanding Q wvia (3.33). Assuming that ¢

is small but W is order unity, we obtain
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o i/2 1i/2
3.45 Q= (l+u)l/ + j —(14) s ee”{l+u) ® s
0
1/2 2 1/2
B e, -(1+3 /k ) N 3 %)
= (l+8 /k } e (n -1je ds
)
Use of this expression in (3.24) gives
2 2.1/2 2 2 1/2
0 ~(x +3_) —(k )
3.6 1%, (k2 a’")l/ si0 | ase © % (nPade u = 0.
ar o o

The integral operator occurring in this equation does not mppear to be susceptible
to further reduction. Nevertheless, it may be useful in numerical caleculations
where Fourier space methods are used to evaluate the exponential operators (bearing
in mind the remarks made earlier about proper treatment of branch cuts). Eg. (3.46)
is new, and it is the only improved parsbolic wave equation known to the author
which is valid for arbitrarily large angles {except for "exact" normal mode expan-
sions}. If, in the integral operator term of (3.46)}, one neglects 82 compared to

Z

2
ko then this equation simplifies to

K o2
3.47 1ert (ko + az 5 (n"-1)u = 0.

Even though (3.47) is exact for propagation in an isovelocity ocean (n2 = 1), it
is not a systematic asymptotic eguation for the general case becsuse there is no
Justification for dropping Bz in the integral operstor and retaining it in the
other term. Thus (3.47) is not a genuine improvement over the standard parabolic
wave equation and its use should not be encouraged. This negative judgement sbout
(3.47) is supported by numerical experience.

In the final portion of this section, we return to (3.22) and attempt to
inelude the range dependence of n in the factorization of wu intc outward and
inward propagating waves [25-29], The main idea of this anslysis is to simply
transcribe the work of Bremmer on the second order ordinary differential equation

analogous to {3.22) to the partial differential equation under consideration:
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2 2
3.48 2+ x5 (o) Tu = 0,
arg [e]

where Q{r)} is the operator defined previously in {3.23). Instead of (3.25) used

before, we now split u according to

-1/2
3498 w= P, s ),
3.49b %—;ﬁ = ikoal/2<u+ ~u_).

These equations define u, and u_, and we obtain

_1 /2 i du
3.50a w=59 (w-gg3.
3.50b uw =3 i-qgllf-)

It is now a simple matter to find the equations satisfied by u, and u_ by dif-
ferentiating (3.50) with respect to r, using (3.48) for Bau/arg, and using
(3.49) to replace u and 2u/dr in terms of wu, apd u_. The resulting pair of
coupled equations for w, and u_ are rather complicated and we shall not write
them down here. When § does not depend on r, they decouple and reduce to {3.24)
previously derived. This fact demonstrates the main advantage of the factor-
ization defined by {(3.49), namely, thaet the equations for e decouple exactly when
there is no range dependence in the index of refraction. The price which one pays
for maintaining this physical requirement is that one must deal with the nonloecal
operator @, fractional powers of Q, and commutators of the type Qr3q/artag/er-q [29].
In the following, we shall deal only with first order backscatter effects
within the standard parabolic approximation. Thus we again use the Taylor series
expension of Q given in (3.29) and neglect guadratic terms. The result of this
calculation is

du 3

. + 1 _ i
3.51a i aT' + ko[l + E(E+}J)]u+ =i -5? u_,
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du .

3.51b =+ k11 + e = -

3
or ar Y+

=

As remarked gbove, these equations are coupled only through the r dependence of
e(z,r) = n2(z,r)-1. These equations may be used to compute acoustic reverberation

as follows. We set
3.52 w =¥, e °,

and neglect the twice scattered waves to obtain

81P+ 1 3211J+ ko 2
3.53a iy *ow .5 * E—[n (z,r)-1l¢, =0
o dz
Y 2 k s 2 2ik r
- 1 9%y- or 2 _ iom o
3.53b -1+ 2 0" (z,r)-11Y_ = - 57 Ve .

Eq. (3.53a) is solved in the usual way for the outgoing wave by starting from » = 0
and marching out to the largest desired range. This stored solution is then put
into the right hand side of (3.53b) and the solution of this equation is obtained
by marching inward from large r backward toward the source at r = 0. In this
manner, the acoustic energy scattered back from the environment to the source can
be computed within the parabolic approximation. In principle, this procedure could
be iterated: by sweeping forward and backward successively, one would build up the
full solution of (3.48). 1In practice, the single-scatter approximation described

above appears to he adequate.

4, Summary

This article has dealt with various aspects of parabolic approximstion
methods in underwater acoustics, mostly for propagation of sinusoidal signals.
Extensions of these methods to time-dependent problems are also available: pulse
propagation, moving sources and receivers, frequency shifting effects due to rapid
temporal variations of oceanic conditions, and so forth. However, an adequate des-

cription of these extensions would require another long section and it was felt
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that the principles involved in meking parabolic approximetions have been suffici-
ently illustrated. Parabolic equation methods in underwater acoustics were developed
only in the last few years, and as more and more use is made of these methods we may
expect that many of the important modelling problems in ocean acoustics may be

solved.
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Appendix A. Historiesl survey of parabolic wave eguation spplications

The "standard" parabolic wave equation in underwater acoustics has the same
form as Schroedinger's equation in guantum mechanics, and thus mathematical studies
of this equation go back to at least the mid-1920's. Indeed, this analogy provides
s convenient point of entry for physicists going into underwater acousties. However,
as an approximetion method in the theory of wave propagaetion, the parabolic wave
equation dates from the work of Leontovich and Fock [1,2] in the mid-1940's. In
fact, it was these scientists who coined the name "parabolic equation method". They
applied the method to the problem of tropospheric radio wave propgation to long
range (over the horizon). They were concerned with calculating the diffraction
caused by the spherical shape of the earth, and the "preferred" direction needed to
make the small-angle parasbolic approximation was the line of sight between the an-
tenna and the horizon. This method was later applied to many other radio wave dif-
fraction problems [2,3] such as high frequency scattering by obstacles of various
shepes. It has also been extensively applied [4,5] to the theory of microwave
resonators, waveguides, and antennas.

When coherent sources of optical radiation {lasers) were developed in the
early 1960's, it was & natural development to apply the parsbolic equation method
to problems of laser beam propagation, and this was quickly done [6,7]. In this
field, the parabolic wave equation is ususlly called the "quasi-optical' equation.
This equation is especially used for problems in nonlinear optics where the index
of refraction depends on the intensity, thereby giving a nonlinear parsbolic wave
equation which is sometimes called the "nonlinear Schroedinger" equation. The
parabolic equation method has slso been applied to nonlinear optical pulse propaga-
tion in dielectric fibers [8], an area which is currently of great interest. In
the past decade hundreds of research papers have been published by workers in non-
linear optics who use the "quasi-optical" approximation, and this research has re-
cently been thoroughly reviewed [9,10].

In the field of plasma physics, there has occurred in recent years an enor-
mous increase of interest in parabolic equation methods. Many types of waves can

propagate in plasmas, and most work is concerned with nonlinear effects which in
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plasmas are especislly large and significant. Some examples of such applications
can be found in [11-1h].

The parabolic equation method has alsc been extensively used since gbout 1968
to study the abstract problem of beam propagation in random media. The beams may
consist of radic waves (radars), acoustic waves (sonars), optical waves (lasers), and
so forth. This abstract problem is equivalent 1o the quantum mechanical problem of
the motion of a particle in & random potential, and has been investigated by meny
scientists and applied methematicians using a variety of techniques [15-21]. A con-
crete application of this method to the problem of radaer beam propagation through
randomly fluctuating ionospheres, including numerical simulations in three dimen-—
sions using the "split-step Fourier" algorithm, is given in [22].

In the field of seismic wave propagation, the parabolic equation method has
been used since sbout 1970 [23] with no apparent awareness of its many other appli-
cations., These geophysical spplications have been successful, and are thoroughly re-
viewed in [2h].

The most recent application of the parabolic equation method to a concrete
physical problem has been the subject of this article: low-frequency long-range
undervater acoustic propagation. The early results of this application were re-
ported in 1973-1974 [35-38]. A computer program was constructed which solves the
parsbolic wave equation using the split-step Fourier algorithm and accepts as input
data measured oceanographic sound speed profiles and volume loss profiles {as func-~
tions of both range and depth) and ocean depth contours from neutical charts. Out-
put data from the program (acoustic fields and transmission loss curves} were com-
pared to experimental measurements and to other acoustic models with generally ex-
cellent results. At the same time, most of the theoretical considerations discussed
in the main text of this article were developed and reported [35-38].

Interest is this new method spread rapidly, snd scoon groups of scientists at
other laboratories developed their own computer programs based on the parabolic
equation method, and the same split-step Fourier algorithm. The method was extended
139,43] to much higher scoustic frequencies than were originally contemplated with

equally good numerical results. Another extension [40] to include random internal
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wave fluctuations [41] in the index of refraction was also quite successful. Since
then, numerous additional investigations [L4-5T7] of parabolic equation methods in
underwater acoustics have been carried out at many laboratories, and this method

is now (1976) widely available and routinely used for acoustic prediction studies*.
The best available computer program for general acoustic use is called PE (for Para-
bolic Equation), and was developed at the Acoustic Envirommental Support Detachment,
Maury Center, Office of Naval Research [h9,50}.* Currently (1976}, several groups
are developing parabolic eguation acoustic models that are three-~dimensional and/or

fully time-dependent,

*
These remarks (and references) were added much later than the lecture {(on which
this article is based) was presented.
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