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WAVE PROPAGATION AND UNDERWAT~ ACOUSTICS 

Joseph B. Keller* and John S. Papadakis~* Editors 

Courant Institute of Mathematical Sciences, New York University 

Department of Mathematics, University of Rhode Island and 
Naval Underwater Systems Center, New London Laboratory 

Preface 

A "Workshop on Wave Propagation and Underwater Acoustics" was held from 

November 19 to November 21, 1974 in Mystic, Connecticut. It was sponsored by the 

Acoustics Branch of the Office of Naval Research under the aegis of Hugo Bezdek. 

The workshop was conceived at the New London Laboratory of the Naval Underwater 

Systems Center and organized by the following committee of members of that 

laboratory: 

Chairman: John S. Papadakis, Department of Mathematics, 
University of Rhode Island (Consultant) 

L. T. Einstein 
R. H. Mellen 
Henry Weinberg 

Among the twenty-one lectures at the workshop was a set of six surveys of 

various aspects of the field. Those surveys were presented by five members and one 

former visiting member of the Courant Institute of Mathematical Sciences, New York 

University. They were prepared with the intention that they would be expanded, 

combined and published together as a general survey of the mathematical theory of 

underwater sound propagation. These notes are the result. They would not have 

appeared without the untiring effort of Professor John S. Papadakis, who guided 

them through the editorial process. I wish to thank him particularly for this. I 

also thank the entire committee for having asked me to present a set of survey 

lectures, and for then agreeing to let me share the presentation with my colleagues. 

Joseph B. Keller 
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CHAPTER I 

SURVEY OF WAVE PROPAGATION AND ~ERWA~ ACOUSTICS 

Joseph B. Keller 

Courant Institute of Mathematical Sciences 
New York University 
251 Mercer Street 
New York, NY 10012 

i. Introduction 

Underwater acoustics, the science of sound propagation in the ocean, has been 

developed extensively during the last forty years in response to practical needs. 

By now the theory is. so well developed that it provides a general understanding 

and a detailed description of how sound travels in the ocean, and of the 

mechanisms affecting it. The theory can also he used to make quantitative 

Calculations of the sound field produced by a given source. However, there are 

difficulties which limit the accuracy of such calculations. The first is the lack 

of adequate information about the sound velocity in the ocean as a function of 

position and time. The second is the analytical and computational difficulty of 

Calculating the sound field in terms of the properties of the ocean. The 

mathematical methods which have been devised to overcome this latter difficulty 

Sme the subject of these notes. 

The analysis of underwater sound propagation is based upon the physical 

Principles of theoretical acoustics. These principles lead to a wave equation for 

the acoustic pressure, together with suitable boundary conditions at the ocean 

Surface and bottom, and initial conditions. The properties of the ocean which 

enter into this formulation are the sound speed c(x,y,z,t) , the bottom depth h(x,y), 



the surface elevation n(x,y,t) and the ambient water velocity R(x,y,z,t). 

Absorption, which results from viscous dissipation, heat conduction, chemical 

reaction, scattering by particulate matter, etc. is usually accounted for by an 

absorption coefficient which depends upon position and frequency. In the analysis 

of time harmonic fields it is combined with the sound speed to yield a complex 

refractive index. Absorption by the bottom is usually accounted for by a bottom 

impedance, or sometimes by a bottom reflection coefficient. 

Most of the theoretical analyses ignore the surface elevation, the ambient 

water velocity, and the absorption in the fluid and in the bottom. Some of these 

effects are taken into account afterwards in an ad hoc manner. For the most part we 

shall follow the common procedure of ignoring them. 

Initially, the theory concerned the deterministic problem of propagation in an 

ocean of prescribed constant or gradually varying properties. However, as experi- 

mental technique improved, it was found that the observed sound field undergoes 

extensive and rapid fluctuations. These fluctuations are caused by fluctuations in 

the properties of the ocean. To analyze them the ocean is represented as a random 

medium, and the problem of sound propagation in a random medium is considered. The 

theory of this kind of propagation is not as well developed as that of propagation 

in a deterministic medium, as we shall see. We shall first describe the theory of 

the deterministic case and then describe that of the random case. 

2. Wave pro~a~ation in a deterministic medium 

Let us consider first the simplest case, that of a time harmonic point source in 

an unbounded homogeneous ocean. The resulting sound field is a spherical wave. 

Secondly, suppose the ocean is bounded above by a horizontal plane free surface on 

which the acoustic pressure p vanishes. Then p is the sum of two spherical ~aves, 

one from the source and another from the image of the source in the plane surface, 

multiplied by the reflection coefficient R = -1 . The interference between these 

two waves leads to an oscillation in the magnitude of p which is sometimes 

referred to as the Lloyd mirror effect. Thirdly, let the ocean be bounded above by 

a horizontal plane free surface on which p = 0 and below by a horizontal plane 

bottom on which the normal derivative 8p/Sn = O. Then p is the sum of an 
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infinite number of spherical waves from the source and from an infinite set of images 

of it in the two planes. 

The image method of constructing p , which leads to the above results, does not 

generalize to the case of an inhomogeneous ocean nor to the case of non-planar 

bolmdaries. Furthermore, at horizontal distances from the source which are large 

compared with the depth, many of the spherical waves have nearly the same phase, or 

arrival time. This makes it difficult to calculate p because the successive waves 

nearly cancel one another. 

These disadvantages of the image method can be overcome, in part, by the method 

of normal modes, which was introduced and developed by C.L. Pekeris [i]. That method 

applies to any horizontally stratified ocean of constant depth. It leads to a 

representation of p as the sum of an infinite number of normal modes. Only a 

finite number of them are propagating and the rest are evanescent. Thus, at large 

distances from the source only the propagating modes are important, so there p is 

represented by a finite sum. 

The method of normal modes is restricted to horizontally stratified oceans of 

constant depth. Furthermore, at distances from the source which are not large 

compared with the depth, the evanescent waves are not negligible, so many of them 

must be taken into account in calculating p. 

The latter difficulty, but not the former, can be overcome by the Hankel 

transform method, which was utilized by L. Brekovskikh [2] and others. This yields a 

representation of p as an integral involving Bessel functions and solutions of the 

normal mode equation. Although this integral is convenient for evaluation at short 

ranges, it is not so convenient at long rs/iges, where the normal mode representation 

is more useful. 

A third representation of p in a horizontally stratified ocean of constant 

depth is given by the method of multiple scattering. This method is a generalization 

of the image method from the case of a homogeneous ocean to that of a horizontally 

stratified one. In it p is represented as a stun of waves: one wave emerging 

directly from the source, another wave which represents scattering of the direct 

Wave by the medium above the source, a third wave which results from scattering of 

the direct wave by the medlumbelow the source, and successive multiply scattered 



waves. Scattering includes both reflection by a boundary and refraction by the 

inhomogeneous medium. In the case of a homogeneous ocean, refraction is absent and 

scattering is only reflection. In this case, the multiple scattering representation 

reduces exactly to that given by the image method. 

Since the three representations of p described above are all exact, they 

all yield the same value of p. Furthermore, each representation can be converted 

into either of the other two. In addition, each representation can be simplified 

by conversion into an asymptotic form which is valid when the acoustic wavelength 

is small compared to the distance over ~ich the sound speed varies appreciably. 

The asymptotic forms can also be converted into one another. 

The asymptotic form of the multiple scattering representation has an inter- 

pretation in terms of the rays of geometrical acoustics. The asymptotic form of an 

n times scattered wave is Just the geometrical acoustics field on a ray which has 

been reflected and/or refracted n times. Therefore, this asymptotic form is 

called the ray representation. It has two important advantages over the other 

representations, which we shall now describe. The first is that it provides a 

geometrical and physical picture of how propagation occurs, and it shows where the 

sound goes. The second advantage results from the fact that the ray representation 

can be derived directly without the restriction to a horizontally stratified ocean 

of constant depth. Therefore, a ray representation can be obtained for a general 

ocean with horizontal as well as vertical variation of sound speed, and with depth 

variation. 

A more refined asymptotic analysis also yields surface diffracted rays. These 

rays are produced at the ocean surface and bottom by refracted rays which are 

tangent to those surfaces. They travel along the surface or bottom within the ocean 

and refract back into the interior. In addition, if propagation within the bottom 

is considered, and if it is faster than that in the ocean, the asymptotic analysis 

yields a head wave. It is associated with rays which hit the bottom at the critical 

angle, travel in the bottom along the interface, and re-enter the ocean at the 

critical angle. We shall not consider these effects nor shall we consider the con- 

sequences of using an impedance boundary condition on the bottom. 



The ray representation also has two disadvantages. The first is that it 

becomes infinite on the caustic surfaces of the rays, and is invalid there. 

Consequently, a different representation, such as a boundary layer expansion 

employing Airy functions, must be used on and near each caustic. Alternatively 

the uniform representation, introduced by D. Ludwig [3] and by Yu. A. Kravtsov [hi, 

can be used both near and away from each caustic. The second disadvantage is that it 

is difficult to evaluate numerically the expression for the amplitude on a ray in the 

general case. 

A second method for taking account of horizontal and temporal variations in 

Sound speed and bottom depth employs a combination of normal modes and horizontal or 

two dimensional rays. Each normal mode is assumed to propagate independently of the 

others. Its horizontal velocity at each point x,y on the surface is determined by 

the vertical sound speed profile and the depth beneath that point. This horizontal 

Velocity is used in the construction of horizontal rays, which determine where each 

normal mode travels. The amplitude of each mode is determined by a transport 

equation along each horizontal ray. 

The construction of the sound field by this method proceeds as follows. 

First, the vertical structure and horizontal velocity of each normal mode must be 

found at each point x,y. Second, for each mode, the horizontal rays which start 

from the point above the source must be found. Third, the initial amplitude of each 

normal mode on each ray must be determined from the source strength distribution. 

Fourth, the phase and amplitude of each normal mode must be found at each point on 

each horizontal ray, starting with the values at the point above the source. Fifth, 

beneath any point x,y the sound field is given by the sum of the normal mode 

functions at that point, each with the phase and amplitude determined from the 

Corresponding ray from the source to x,y. 

This method can be derived systematically from the assumptions that the 

horizontal and temporal gradients of sound speed and bottom depth are small. The 

derivation also yields corrections to the theory if the gradients are not so small. 

This type of theory and its derivation were introduced in 1958 by J. B. Keller [5] in 

the analysis of surface waves in water of nonuniform depth. For underwater sound it 
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was introduced by A. D. Pierce [6] in 1965. The systematic derivation of the theory 

for this case, together with its implementation and application, were presented by 

H. Weinberg and R. Burridge [7] in 197h. 

The method of normal modes and horizontal rays enjoys some advantages of each of 

the two methods which it combines, and avoids some of their disadvantages. Thus, it 

is applicable to oceans with horizontal and temporal variations in sound speed and 

depth, whereas the normal mode method is not. However, the horizontal and 

temporal gradients in these quantities must be smaller than is required for the ray 

method alone. It avoids the necessity of finding rays in three dimensions and 

constructing the amplitudes along them. But it still fails to be valid at the 

caustics, which are now curves in the horizontal plane, and on the vertical lines 

through the caustics. Again boundary layer expansions and uniform expansions can be 

used on and near these places° 

An alternative to the use of horizontal rays together with normal modes is the 

use of a horizontal wave equation for the complex amplitude of each normal mode at 

x,y. This theory is sometimes called NINMA, an acronym for "non-interacting normal 

mode analysis". It also can be derived when the horizontal gradients of sound 

speed and bottom depth are small. Its advantage over the use of normal modes and 

horizontal rays is that it avoids the non-uniformities associated with caustics. 

Its disadvantages are that it requires more computing, since one must solve a wave 

equation for the amplitude of each mode, and it does not provide the geometrical 

picture of where the modes travel, which is providedby the horizontal rays. NINMA 

is not described further in these notes. 

A third method for dealing with horizontal variations in sound speed and depth 

is the parabolic equation method. This is a method for the approximate description 

of time harmonic waves which are propagating primarily in one direction. It was 

introduced in connection with electromagnetic wave propagation by M. Leontovlch and 

V. A. Fock [8] in 19~6 and adapted to ~nderwater sound propagation by F. D. Tappert 

and R. H. Hardin [9] in 1973. To illustrate the method we consider the equation 

+ Pyy + Pzz + k2n2(~)P = 0 i. Pxx 
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For a wave travelling primarily in the x direction we write p = eikXq , 

and we find that q satisfies the equation 

2. qxx + 2ikqx + qyy + qzz + k2[n2(~)-l]q = 0 . 

We now assume that qxx is small compared to 2ikqx , so we drop it and obtain 

3. 2ikqx + qyy + qzz + k2[n2(~)-l]q = 0. 

This equation for q is of first order in x and of second order in y and z , 

like a parabolic equation with x playing the role of time. 

The advantage of (3) over (i) is that (3) is easier to solve numerically. This 

is because the parabolic character of (3) permits it to be solved by a marching or 

step-by-step method in the x-directlon. In contrast (i), being elliptic, must be 

solved simultaneously at all values of x. This difference makes it possible to solve 

problems involving (3) which it would be impossible to solve, or very difficult to 

solve, using (i). In the application to underwater acoustics, the role of x is 

played by the cylindrical coordinate r and eikx is replaced by the Hankel 

function H~l)(kr) . 

In order to use (3) or the corresponding equation with r instead of x , it 

is necessary to derive initial conditions at x = 0, or r = 0 . These conditions 

are obtained by matching the solution of (3) to the solution of (1) near the source. 

The practical value of (3) can be greatly improved by using the efficient 

numerical methods which are available for the solution of parabolic equations. 

Tappert has refined these methods to the point where it is possible to solve (3) 

repeatedly with different random choices of n(~) to simulate wave propagation 

in a random medium. 

The disadvantage of the parabolic equation method is its limitation to nearly 

radial propagation. It is inaccurate whenever the rays from the source deviate 

appreciably from horizontal straight lines. Therefore, it is not valid if the rays 

bend significan%ly in either a horizontal or a vertical plane, or if the bottom slope 

becomes large. However, within these limitations it appears to be very useful. 



B. Wave propagation in a stochastic medium 

The observed temporal fluctuations in the sound field, mentioned in the 

Introduction, may be due to temporal fluctuations of the sound speed in the ocean, to 

temporal fluctuations in the ambient velocity of the water, and to temporal 

fluctuations in the elevation of the ocean surface. To analyze these fluctuations it 

is customary to consider each temporally fluctuating quantity to be a random quantity. 

Then the acoustic pressure is the solution of a wave equation in which some coeffi- 

cients are random functions, and in which the upper boundary is a random surface. 

This treatment of the pressure fluctuations in terms of a stochastic differential 

equation with a stochastic boundary raises two problems. The first concerns the 

relationship between the solution of this stochastic problem and the observed 

pressure. The second problem is the mathematical one of solving the stochastic 

problem. 

The first problem is usually resolved by tacitly assuming that the statistical 

properties of the theoretical pressure will agree with the corresponding statistics 

of the observed pressure provided that the statistical properties of the ocean are 

chosen properly. In this statement the theoretical problem involves a stochastic 

pressure and a stochastic ocean, while the statistics of the observed pressure are 

based upon a temporal record and time averaging. Therefore the statistical properties 

of the theoretical stochastic ocean should agree with the temporal statistics of the 

actual ocean in order to be appropriate. This necessitates the observation of the 

statistics of the sound speed,of the ambient velocity of the water, and of the ocean 

surface. Considerable progress has been made in this direction, but much more remains 

to be done. We shall not consider this problem further. 

The second problem is a special case of the general one of wave propagation in a 

random medium, with the extra complication of a random boundary. There are several 

reviews of this subject, such as the books of Chernov [10], of Tatarski [ll], and of 

Klyatskin [12], the articles of Keller [13], of Frisch [lh], of Barabanenkov , 

Kravtsov, Rytov and Tatarski [15], and those in the book edited by Keller and 

McKean [16]. Other relevant works are referred to in Chapters IV and V. Therefore 

we shall present only a brief description of this extensive field. Chapter IV 



contains a detailed investigation of a special aspect of it, namely the analysis of 

the stochastic equations for the amplitudes of the normal modes of a sound field in 

an Ocean with a random sound speed. 

In principle the stochastic problem can be formulated by introducing a family of 

oceaus depending upon a random variable u , with a probability density P(m). The 

solution of the propagation problem for each m yields a pressure p(x,a) which is 

also random, since it depends upon a. Then the statistics of p(x,a) such as its 

mean, its variance, its two point correlation function, etc. can be calculated using 

the solution p(x,a) and the probability density P(a). This procedure can be 

described as "solving and then averaging" to get the statistics of p. 

A common method of solving for p is the Born expansion, an expansion in powers 

of the deviation of the sound speed from a constant. This expansion has the defect 

that any finite number of termsof it leads to divergent results in a statistically 

homogeneous medium of infinite extent. Nevertheless Pekerls (see[10]) showed how to 

use the first Born app~.oximation to calculate the average energy scattered from a 

wave by unit volume of the medium. This determines the total scattering cross 

section per unit volume and the corresponding attenuation coelficient. The latter 

can be used to calculate the exponential decay of a propagating wave. His method 

also gives the average energy scattered into any direction by unit volume of the 

medium, which yields the differential scattering cross section per unit volume. The 

differential cross section can be used in the transport equation for the incoherent 

energy flux in the medium. 

The second Born approximation was applied to a thin slab of the medium by 

Keller E13]to determine a modified propagation constant. This constant governs the 

propagation of the average wave. Its imaginary part is Just the attenuation coeffi- 

cient obtained by Pekerls. Originally Rayleigh had used the slab method to find the 

modified propagation constant in a medium containing discrete scatterers, such as 

dust particles or water droplets. 

To overcome the defects of the Born expansion, various methods have been 

employed. One of the simplest and most useful is the forward scattering approximation 

to the first Born approximation. In this approximation only scattering into the 

"forward" half-space is taken into account, so the first Born approximation reduces 
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to am integral over the region between the source and the observation point. This 

simplification leads to finite results, but the scattered intensity increases 

indefinitely as the observation point moves away from the source. Thus the forward 

scattering - Born approximation is not uniformly valid with respect to the position 

of the observation point. 

The lack of uniformity of the forward scattering - Born approximation is partly 

overcome by the Rytov method. This is a modification of the Born method in which 

log p is expanded rather than p. It leads to the same integrals as the Born 

expansion, so it also yields divergent results in statistically homogeneous media of 

infinite extent. When modified to the forward scattering - Rytov approximation, 

however, it gives finite results. They are not uniformly valid with respect to the 

observation point either, but they are valid to a much greater range than those of 

the forward scattering - Born expansion. 

Another method of avoiding the divergence of the Born approximation is that of 

summation of a selected infinite subset of terms in the Born expansion. This can be 

done for the average of p and for the two point correlation of p, assuming that the 

sound speed fluctuations are Gaussian. The terms are usually represented by 

Feynman diagrams. Then it is shown by diagrammatic means that the sum of the selected 

terms satisfies a certain integral equation or integro-differential equation. These 

equations are analogous to the Dyson and Bethe-Salpeter equations of quantum field 

theory. The introdmction of these equations for the average and two point 

correlation of p is often called the smoothing method because these equations have 

smooth coefficients. 

A much simpler derivation of the smoothing method for the average field was 

given by Ament for electromagnetic waves, by Meecham for scalar waves, and by 

Bourret for general waves. (See [13]). They averaged the original equation and 

replaced a certain average of a product by a product of averages. A direct 

perturbation theoretic derivation of this result, for general waves, and of that for 

the two point correlation function, was given by Tatarski and Gertsenstein (See 

[lh]), and by Keller [133. 

The equation for the average pressure can be solved to yield a modified 

propagation constant which is essentially the same as that obtained from the second 
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Born approximation and the slab method [13]. The equation can also be solved with 

any source distribution in an unbounded statistically homogeneous medium because it 

is translationally invariant. Therefore Fourier transformation leads to an explicit 

solution. 

Unfortunately it is not so easy to solve the equation for the two point 

correlation function of p. As a consequence the correlation function has been dealt 

With by other methods which involve further approximations. The forward scattering 

approximation is used for this purpose via the replacement of the reduced wave 

equation for p by a parabolic equation. Even then the correlation function of the 

sound speed fluctuations is usually specialized to an ideal form in order that the 

results for the correlation function of p be simple enough to use [ll]. See also 

Chapter V, references [15] - [21]. Recently Dashen [17] has used the Feynman path 

integral representation of the solution of the parabolic equation to obtain new 

results on the moments and correlation functions of p. 
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CHAPTER II 

EXACT AND ASYMPTOTIC REPRESENTATIONS 

OFT HE SOUND FIEJD IN A STRATIFIED OCEAN 

DalJit S. Ahluwalia Joseph B. Keller 

Courant Institute of Mathematical Sciences 
New York University 
251 Mercer Street 
New York, NY 10012 

0. Introduction 

In the theoretical study of the sound field produced by a source in an ocean, one 

model has been investigated very thoroughly. This is the model of a point source in 

a horizontally stratified ocean of constant depth. There are two reasons for this. 

One is that it represents approximately a real sound source in a real ocean, because 

real sources are often small, and because real oceans are nearly horizontally strati- 

fied. The other is that it can be analyzed by the known techniquesof applied mathe- 

matics. As a consequence, this model is the foundation for all studies of ocean 

acoustics. 



15 

In view of the importance of this model, we shall analyze it in some detail. 

First we shall obtain the exact solution for the acoustic pressure p by three well 

known methods, which lead to three different representations of p. These are the 

method of normal modes, the method of Hankel transformation and the method of multi- 

ple scattering. Then we shall show how these three different representations can be 

transformed into one another by using contour integration and residue evaluation, the 

binomial expansion and the Poisson s~,mm~tion formula. 

Next, and most importantly, we shall evaluate each of the three representations 

asymptotically for the wavelength small coml~red to the scale length of the sound 

velocity profile. These evaluations involve three methods of asymptotic analysis: 

the WEB method for the asymptotic solution of ordinary differential equations, the 

Langer modification of this method to treat equations with turning points, and the 

method of stationary phase for the asymptotic evaluation of integrals with rapidly 

oscillating integrands. The resulting three asymptotic representations are simpler 

than the exact ones and have clear physical interpretations. Each one is most useful 

in a particular range of parameters. We shall also show how these asymptotic repre- 

sentations can be converted into one another. 

Finally we shall obtain the ray representation of p. This is a representation 

which involves the rays of geometrical acoustics. First we shall obtain it by 

further asymptotic evaluation of the asymptotic form of the multiple scattering re- 

presentation. Then we shall show how to get it by a construction involving rays, 

phase functions, amplitude functions and other concepts of geometrical acoustics. 

Thirdly we shall derive it by direct asymptotic solution of the reduced wave equation 

and the corresponding boundary conditions. The last two derivations have the virtue 

that they are applicable to an ocean with an arbitrary variation of sound velocity 

with position, and an arbitrary depth variation. It is merely necessary that the 

Scale lengths of these variations be large compared to the wavelength. However the 

practical utilization of the ray representation is computationally difficult in cases 

other than that of a stratified ocean of constant depth. 
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Much of the work on which this chapter is based is due to C. L. Pekeris and to 

L. Brekhovskikh. More extensive accounts, together with various applications and 

additional details, can be found in the books of Brekhovskikh Ill, Ewing, Jardetsky 

and Press [12], Felsen and Marcuvitz [13] and Keller and Lewis [lh]. 

i. Formulation and fundamental equations 

The velocity u, pressure p, mass density p and entropy density s in an inviscid, 

non-heat conducting fluid satisfy the following equations: 

1.1 ~t + (U'V)U = -p-lvp + ~[ + p-iEf__ , 

1.2 Pt + V • (pu) : 0 , 

1.3 S t + u " Vs : 0 , 

1.~ p = p(p,s) 

These are the equations of momentum, mass conservation, adiabatic motion and the 

equation of state, respectively. In (1.1) ~ is the acceleration of gravity and C~ 

is another external force per unit volume, which represents an acoustic source. The 

parameter £ is a measure of the strength of this source. 

Let us suppose that the fluid is bounded above by the free surface 

z = q(x,y,t) and below by the rigid surface z = -h(x,y). Let Pc be the constant 

pressure above the free surface. Then the continuity of pressure across the free 

surface and the kinematic condition at this surface yield 

1.5 p[x,y,q(x,y,t),t] =pc on z = q(x,y,t) , 

1.6 q t + u~ x + Vny = w on z = q(x,y,t) . 

The rigidity of the bottom requires that the normal component of ~ vanish on the 

bottom: 

1.7 w + uh + vh = 0 on z = -h(x,y) • 
x y 
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Here ~ = (u,v,w) and ~ = (x,y,z) with the positive z axis pointing vertically up- 

ward. 

When E = 0, a particular solution of (1.1) - (1.7) is ~ = 0 and ~ = 0 with p, 

P and s depending only upon z. These three functions p(z), p(z) and s(z) are re- 

latedby (1.4) and the z component of (lol), which yields the hydrostatic equation 

1.8 Pz = -Pg " 

In addition (1.5) yields p(O) = Pc' Thus one of these three functions, or one addi- 

tional relation among them, can be prescribed. Then (1.4) and (1.8) yield the re- 

maining two functions. We shall call this solution the basic state. 

We now consider a particular solution of (1.1) - (1.7), which naturally depends 

upon the parameter g in (1.1). We asst~ne that when e = O, this solution reduces to 

the basic state described above. By differentiating (1.1) - (1.7) ~ith respect to 

£ and setting ~ = O, we obtain the acoustic equations, which are: 

÷ o-2 vp ÷ p-l , 

1.10 6t + V • (p~)_ = 0 , 

i.Ii st + ~ " qs = 0 , 

1.12 ~ = p~ + ps ~ 

1.13 ~ + 6p z = 0 , z = 0 , 

6 " 1.14 t = W , z = 0 , 

1.15 w+~ +~h = 0 , z=-h(x,y) • 
x y 

Here ~ ~, etc. denote derivatives with respect to g evaluated at ~ = 0, while p, 

. o  

0, s, etc. denote the basic state. We shall call ~, p, etc. the acoustic quantities. 

It is convenient to obtain a single equation and boundary conditions for p by 

eliminating the other acoustic quantities from these equations. To do so we differ- 

entiate (i. I0) and (i.ii) with respect to t, noting that the basic state is inde- 

pendent of t. We then use (1.9) to eliminate u-t and (1.8) for Pz' to obtain 

1.16 Ptt- Ap - gPz = -V • 
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1.17 stt - P-l(pz+gD)Sz = -p-lszf3 " 

Now we differentiate (1.12) twice with respect to t and use (1.16) and (1.17) in the 

resulting equation to get 

1.18 Ptt - ppAp = -pQV • ~ + ~-Ipssz(pz+g;-fB) + gPQ;z " 

In ocean acoustics, all the terms on the right side of (1.18) except the first one 

are usually negligible compared to the other terms. 

can be replaced by the wave equation for p: 

1 • 
1.19 A~ - --~ Ptt 

C 

2 
Here c 

When this is the case, (1.18) 

=V-f. 

= PO is the sound speed, which depends only upon z because the basic state 

depends only upon z. 

In the boundary condition (1.13) the term ~Pz is equal to -pg~ in view of 

(1.8), and this term is usually negligible compared to p. Then (1.13) becomes 

1.20 ~ = 0 at z = 0 . 

Finally we differentiate the bottom boundary condition (1.15) with respect to t and 

use (1.9) to eliminate u-t" As before, we assume that the term p-2~Vp is 

negligible, and also that f = 0 at the bottom. Then (1.17) yields 

1.21 Pz + Pxhx + pyhy = 0 at z -- -h(x,y) . 

The wave equation (1.19), together with the two boundary conditions (1,20) and 

(1.21), plus the specification of the initial values of p and of Pt' constitute an 

initial-boundary value problem for p(x,t). Once p is found, the other acoustic 

quantities can be found from (1.9) - (1.11) and (1.14), provided that their initial 

values are given. In order to find p it is necessary to know the sound speed c(z), 

the bottom depth h(x,y) and the source distribution V • f(x,t), in addition to the 

initial values of ~ and Pt" We shall assume that these quantities are known, and 

consider the methods of solving the problem for p . 
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2. Time harmonic waves 

The most important acoustic fields are the time harmonic ones, in which ~ is of 

the form 

2.1 ~(~,t) = e-i~tp(~) . 

Here and hereafter it is to be understood that p or any other real quantity is the 

real part of a complex expression for it, such as that on the right side of (2.1). 

The complex pressure amplitude p(~) will be referred to as the pressure for short. 

It is not to be confused with the pressure in section i, which is denoted by the 

same letter, but which will not appear again. 

V • f must be of the form 

-i~t (x) e.e v • !(~,t) = e q _ • 

In order that (2.1) satisfy (1.19), 

When (2.1) and (2.2) hold, then (1.19) - (1.21) become 

2.3 Ap + k2n2(z)p = q(x) , 

2.4 p = 0 at z = 0 , 

2.5 PZ + Pxhx + pyhy = 0 at z = -h(x,y) • 

In (2.3) we have introduced the wavenumber k = ~fc o 
and the refractive index 

n = Co/C(Z), where c o is some typical value of the sound speed~ We call (2.3) the 

reduced wave equation or sometimes the He]ahholtz equation. 

The boundary value problem (2.3) - (2.5) does not determine p uniquely. This 

is because the homogeneous problem, obtained by setting q(x) = 0, has solutions 

which represent waves coming in from infinity. Therefore some additional condition 

must be imposed in order to eliminate these extraneous waves and determine a unique 

solution. There are three different methods for doing this, which we shall now 

describe. The first and physically most appealing, is to solve the initial value 

problem with the source given by (2.2) and with ~ = Pt = 0 at t = 0. This problem 

has a unique solution ~(X__,t), which we expect to approach the form (2.1) as t ÷ 

Therefore we define p(x) by 
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2.6 p(~) = lira ei~t~(a,t) 

It can be proved that this limit exists and that it satisfies (2.3) - (2.5). 

The second method is to replace k by the complex quantity 

2.7 k = ---~ + ie , e > 0 . 
c 
o 

The positive constant ~ represents absorption, and therefore the desired solution 

of (2.3) - (2.5) will decay to zero at infinite distance from the source region. 

An incoming wave, however, will be infinitely large at infinity in the direction 

from which it comes. Therefore the requirement that the solution be bounded at 

infinity should eliminate incoming waves and pick out a unique solution p(~,~), 

which depends upon ~. Then as ~ tends to zero, this solution should tend to a 

limit. Thus we define p(~) by 

2.8 p(~) = lim p(~,e) . 
~0 

It can be proved that p(~,e) exists and is unique, that this limit exists and that 

it satisfies (2.3) - (2.5) with G = O. Furthermore it is the same solution as is 

given by (2.6). 

The third method deals directly with (2.3) - (2.5) keeping k real. It is to 

impose a radiation condition on the solution, which directly eliminates incoming 

waves and thereby selects a unique solution. The precise form of this condition 

depends upon the number of space dimensions, the shape and depth of the domain, etc. 

In the present case it involves the normal modes and eigenvalues of the problem, so 

we shall not formulate it until we introduce those quantities. It can be proved 

that this method also yields a unique solution p(~) which is the same as that given 

by (2.6) and (2.8). The fact that the limit in (2.6) yields the same solution as 

the method using the radiation condition is sometimes called the limiting amplitude 

principle, while the fact that (2.8) yields the same solution is called the limiting 

absorption principle. Thus any one of these methods can be used to find the desired 

solution p(~), which we shall call the radiating or outgoing solution. 

There is actual absorption of sound in the ocean due to viscosity, heat conduc- 

tion and chemical reaction, all of which we have ignored in deriving (2.3). This 
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absorption can be accounted for by writing k in the form (2.7) with a(~) a function 

of frequency determined by the dissipative processes. When this absorption is taken 

into account, the correct solution p(x) is selected by the requirement that it be 

bounded at infinity. Then the radiation condition is not necessary. Furthermore the 

time dependent equation corresponding to the reduced wave equation (2.3) with k given 

by (2.7) is not Just the wave equation (1.19), but is a more complicated equation or 

system of equations. 

The time harmonic solutions (2.1) can be used in a Fourier integral to synthe- 

size the solution of (1.19) for a source with arbitrary time dependence. This 

accounts in part for their great importance. Thus suppose that V • ~has the Fourier 

representation 

~(~,t) = I e-i~tq(~'~)d~ " 2.9 V @ 

Then if p(x,~) is the outgoing solution of (2.3) - (2.5) with the source q(~,m), the 

solution of (1.19) - (1.21) is 

2.10 p(~,t) = I e-i~tp(~'~)d~ " 

Furthermore, the solution for an arbitrary source distribution q(~,e) can be obtained 

from the solution for a point source, represented by a delta function. Therefore we 

shall consider the solution of (2.3) with q(~) = -6(~-~o ) . 

3. The homoseneous ocean of constant depth 

3.i Introduction 

The simplest sound velocity profile is the uniform one c(z) = Co, where c o is a 

constant. In this case n(z) = Co/C(Z) = i, and for a point source (2.3) becomes 

~(r) 
3.i Ap + k2p = -~(z-z o) 2~r 

Here the source location -oX is r = 0, z = Zo, in cylindrical coordinates. The sur- 

face condition is (2.4), 

3.2 p=0 at z~0 • 

We shall assume that the depth is constant so that h = constant, and (2.5) becomes 
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RAY 

BVP 

EXPANSION 

HANKEL 

RESIDUE 

~"  ~ MODE 

5/  
POISSON SUMMATION 

Figure i. The boundary value problem (BVP) is solved by the method of normal modes, 

by the method of Hankel transforms and by the ray method. This leads to the three 

representations denoted by mode, Hankel and ray, respectively. Then the representa- 

tions are transformed into one another by the method of residues, by the binomial ex- 

pansion and bythe Poisson summation formula, as indicated. 

C1 

Fi6ure S. The contour of integration C I extends from the origin to infinity and is 

slightly below the real axis in the a-plane. The contour C 2 is ei~Cl with the orien- 

tation reversed. The arc r R of radius R connects C I and C 2 to form a closed contour. 



23 

3.3 Pz = 0 at z = -h . 

The problem (3.1) - (3.3), with a suitable radiation condition, determines the sound 

pressure due to a time harmonic point source in a homogeneous ocean of constant 

depth with a free surface and a rigid bottom. Since the problem is axially symmet- 

ric, the solution p(r,z) is independent of the angular coordinate e. 

In the next three sub-sections we shall solve this problem by three different 

methods and obtain three different representations for the solution. Then in the 

final sub-section we shall show how these representations can be transformed into 

One another. All of these results are s1~mm~rized in Figure i. 

3.2 Normal mode representation 

The homogeneous form of (3.1) can be solved by separation of variables. To use 

this method we seek a solution which is a product ~(z)~(r). We substitute it into 

the homogeneous form of (3.1) and separate variables to obtain 

3.h ¢zz + k2~ = k2a25 " 

3.5 ~rr + ~r Sr = -k2a2~ " 

We have written the separation constant as ka for convenience. The general solu- 

tions of these two equations are 

3.6 ¢(z) = Asln[k(l-a2)i/2z] + Bcos[k(l-a2)i/2z] , 

3.7 $(r) = CH(1)(kar) + DH~2)(kar) • 
o 

Here H (I) and H (2) are the Hankel functions of order zero of the first and second 
o o 

kinds, respectively. 

The boundary conditions (3.2) and (3.3), when applied to the product solution 

$(z)~(r), yield the two equations ¢(0) = 0 and Sz(-h) = 0. From the first condition 

it follows that B = 0. Then the second condition yields cos[kh(l-a2) 1/2] = 0. The 

solutions of this equation are a = a n where 

3.8 a n = [i - (n~) 2 (~)2]1/2 , n = 0,i,2,'-- 
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Thus there are infinitely many solutions of the form (3.6) satisfying (3.2) and 

(3.3), which we shall denote by ¢n(Z), where 

3,9 $n(Z) = Ansin[k(1-a~)I/2z] , n = 0,i,2,.-. 

Here A is a constant which is not yet determined. 
n 

To determine one of the constants in (3.7) we shall utilize the radiation con- 

dition. The appropriate form of this condition to select the outgoing wave is 

3.i0 lim rl/2(~r-ik~) = 0 . 
r-~Oo 

When (3.7) is substituted into (3.i0), the result is D = O, so the outgoing solution 

is Just a multiple of H(1)(kar). Since the product solution ~n ~ already contains 
O 

the arbitrary constant factor An, we can set C = 1 with no loss of generality. Then 

the product solution which satisfies the boundary conditions and the radiation con- 

dition is Ansin[k(l-a~)I/2z] H(!)(kanr)'o 

Each of these p r o d u c t  s o l u t i o n s  i s  c a l l e d  a " n o r m a l  mode" ,  o r  J u s t  a "mode" f o r  

short. It is said to be propagating if a is real and positive, and non-propagating 
n 

" ( 1 ) ( k a  r )  or evanescent if a n is positive imaginary, because then n o n decays exponen- 

tially as r increases. From (3.8) we see that there are only M+l propagating modes, 

1 where M is the g r e a t e s t  i n t e g e r  l e s s  t h a n  g - l k h  - ~ , and i n f i n i t e l y  many e v a n e s c e n t  

modes. 

Now to find p we represent it as a sum of modes: 

3.11 p(r ,z)  = ~ %sinEk(1-a~)l /2z] H(1)(kan r) • 
n=0 o 

We substitute (3.11) into (3.1), using the fact that 

3.12 
[ 1 ]  i6(r) 

+ ~r + H (kanr) = 3r 2 n 21rr 

Then (3.1) becomes 

co 

3.13 ~ A sin[k(l-a2)i/2z] = ~ 6(z-z O) . 
n= 0 n n 

To solve (3.13) for A n we multiply (3.13) by sin k(l-am2)i/2z and integrate it from 

z = -h to z = O. This yields 
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3.1  A =  sin[ (1-a )l/2zo]. 

By using (3.14) in (3.11) we finally obtain the normal mode representation of p, 

which is 

3.15 p(r,z) =~h ~ sin[k(l-aR)i/2Zn o]Sin[k(l-a2)i/2z]H(!)(kan o nr) . 
n=O 

The pressure p can be conveniently calculated from (3.15), especially when kr 

is large. In that case the evanescent modes are negligible, and only the finite 

number of propagating modes need be used. We also see from (3.15) that p is symmet- 

ric in z and z . 
o 

3.3 

tion of the solution. 

f(r) by 

Hankel transform representation 

We shall now solve for p in a different way and obtain a different representa- 

We begin by defining the Hankel transform f(s) of a function 

3.16 f(s) = 2~ Jo(sr)f(r)rdr . 

0 

Here J is the Bessel function of order zero. The inverse Hankel transform is 
O 

i Jo(sr)f(s)sd s 3.17 f(r) = ~ 

0 

Now we multiply (3.1) - (3.3) by 2~Jo(kar)r and integrate both sides of each 

in (3.i) = ip = r-!(rPr) equation from r O to r = ~. In doing so we write Prr + r- r r 

and we denote the transform of p(r,z) by p(s,z). Then we obtain 

3.18 2m I J°(kar)(rPr)rdr + Pzz(ka'z) + k2p(ka'z) = -6(z-z°) ' 

0 

3.19 p(ka,O) = 0 , 

3.2o ~z(ka,-h) = 0 

To evaluate the integral in (3.18) we require p to satisfy the radiation condition 

(3.10), and we choose a to have a small negative imaginary part. Then in Appendix 

3. BAwe show that the integral equals -k2a2p(ka,z) • Therefore (3.18) becomes 
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3.21 Pzz + k2(1-a2)P = -~(Z-~o ) 

In order to solve (3.19) - (3.21) for p(ka,z) we introduce two solutions of 

the homogeneous form of (3.21). One of them, PI' is required to satisfy (3.19) and 

the other, P2' is required to satisfy (3.20). Then we can write p in the form 

3.22 ~(~a,z> = ~l(ka,~>)~2(~a,z<)/W(ka) . 

Here z> = max(Z,Zo) , z< = min(z,z O) and W(ka) is the Wronskian of Pl and P2 ' We 

find readily that Pl = sin[k(!-a2)I/2z]" P2 = c°s[k(l-a2)l/2(z+h)] 

and W(ka) = -k(l-a2)i/2cos[kh(1-a2) I/2] . 

Finally to obtain p(r,z) we substitute the above values of PI' P2 and W into 

(3.22) for p and then use (3.17). In this way we get 

sln[k(l_a2)l/2z>Scos[k(l_a2)i/2(z<+h)] 

3.23 p(r,z) = - 2~ Jo(kar ) ......... ada. 
0 (l'a2)i/2c°s[kh(l-a2)i/2] 

This is the Hankel transform representation of p, from which p can be calculated by 

numerical integration. 

3.BA Appendix 

We shall evaluate the integral in (3.18) by defining it as the limit as R ÷ ~ 

of the integral with upper limit R. Then integrating by parts twice we get 

R R 

3.2h 2w I J°(kar)(rPr)rdr = 2~J°(kaR)RPr(R'z) - 2wka I J°(kar)rPrdr 

0 0 

= 2WJo(kaR)RPr(R,z) - 2wkaRJ~(kaR)p(R,z) 

+ ~ka 

R 

I [Jo(kar)r]rPdr • 

0 

When Im a < O, as we assume it to be, then J~(kaR) - iJo(kaE) as R ÷ 

Thus 

3.25 2WJo(kaR)RPr(R,z ) - 2~kaRJ~(kaR)p(R,z) ~ 2WJo(kaR)R[Pr(R,z)-ikap(R,z)] . 

Because p satisfies the radiation condition (3.I0), the right side of (3.25) tends 
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to zero as R + ~ Next we use the identity [xJ~(x)]' = -XJo(X) in the integral 

on the right side of (3.24) to write the integrand as -kaJo(kar)pr . Then the 

limit of the right side of (3.24) as R ÷ ~ is Just 

-(ka)2 I Jo(kar)prdr = -(ka)2p(ka'z) " 

0 

3.h Ray representation 

A very illuminating expression for p(r,z) is the ray representation, which we 

shall now obtain. To obtain it we first consider the equation (3.i) in the full 

three dimensional space, ignoring the boundary conditions (3.2) and (3.3). The gen- 

eral spherically symmetric solution of (3,1) is Po(R) = AeikR/R + Be-ikR/R where 

A + B = 1/4W and R = [r2+(Z-Zo)2] 1/2 denotes distance from the source. To eliminate 

the incoming wave e-ikR/R we impose the radiation condition 

3.26 lim R[pL(R)-ikPo(R)]u = 0 
R~ 

This condition yields B = 0 and thus the outgoing spherically symmetric solution of 

(3.1) in the whole space is 

3.27 Po(R) = eikR/4wR • 

We can interpret the exponent in (3.27) as ik multiplied by the phase function 

R. This phase equals zero at the source and increases like the distance along a 

straight line from the source to the field point. We call this straight line a 

"ray". The factor l/R, which multiplies the exponential factor, is called the ampli- 

tude. It decreases llke the reciprocal of the square root of the cross-sectional 

area of a tube of rays, since that area increases like R 2 • As a consequence the 

product of the square of the amplitude multiplied by the cross-sectional area of a 

ray tube remains constant along a ray. This constancy expresses the fact that 

energy is conserved within a ray tube. These two facts about the spherical wave 

(3.27) -- linear increase of phase along a ray and energy conservation in a ray tube-- 

can be used to construct the ray representation of other waves, as we shall see. 

Let us now use these considerations to solve the original problem (3.1) -(3.3). 
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Fi6ure 2. A point source located at z = z 0 emits rays in all directions. The four 

rays shown here all arrive at the field point (r,z). One of length R is the direct 

ray; another of length R' is reflected from the top surface z = 0 and appears to come 

from a source at z = -z O. A third ray of length R" is reflected from the bottom sur- 

face z = -h and appears to come from a source at z = -2h-z O. The fourth is reflected 

first from the top and then from the bottom, and appears to come from a source at 

z = -2h + z O. 
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We begin with the spherical wave Po(R) givenby (3.27), which satisfies (3.1) but 

does not satisfy the boundary conditions. When the rays associated with Po hit the 

upper boundary z = 0 , they produce reflected rays determined by the law of reflec- 

tion. The phase and amplitude on each reflected ray can be found by the preceding 

considerations, starting with the values of the phase and amplitude on the incident 

ray at the point of reflection. In addition the reflected amplitude must be multi- 

plied by a reflection coefficient equal to -1 in order that the sum of the incident 

and reflected waves satisfy the condition p = 0 on z = 0. Since all the reflected 

rays appear to come from the image source at r = 0, z = -Zo, this construction leads 

to a reflected wave which is Just the spherical wave -elkR'/hwR '. Here R' is dis- 

tance from the image source. (See Figure 2.) 

A similar construction applies to the rays reflected from the bottom. However 

the reflection coefficient for bottom reflection is + 1 because the incident and re- 

flected waves must combine to satisfy Pz = 0 at z = -h . Furthermore the image 

ikR" 
source is at z = -z - 2h . Thus the bottom reflected wave is e /4wE" where R" 

O 

is distance from the image of the source in the bottom. 

Multiple reflection of the originally reflected rays gives rise to an infinite 

sequence of families of rays, each of which appears to come from an image point. 

These points are at z = ±z + 2nh, n = O,±l, ... By keeping track of the number 
O 

of reflections from the top and bottom, we find the following expression for the 

total field p, which is the sum of the incident wave plus the singly and multiply 

reflected waves: 

3.28 p(r,z) = ~ 

(_l)n) eik[r2+(z-z°-2nh)291/2 

[r2+(Z_Zo_2nh)2]i/2 - 

ik[r2+(Z+Zo-2nh)2] 1/2 

~[r2+(Z+Zo -2nh)2]I/2 I" 

This is the ray representation of the solution p . 

The result (3.28) can also be derived directly by considering the successive 

images of the source point in the top and bottom surfaces, without considering the 

rays. That method of derivation, which is limited to plane boundaries and homoge- 

neous media, is called the image method. We shall also refer to (3.28) as the 

multiple reflection representation of p, because each term in it except that with 
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n = 0 represents a wave which has been reflected a number of times from the top and 

bottom boundaries. 

3.5 Connections between the representations 

We have now obtained three representations of the solution p(r,z) of (3.1) - 

(3.3). This solution determines the acoustic pressure due to a time harmonic point 

source in a homogeneous ocean of constant depth with a rigid bottom. The normal 

mode representation (3.15) is most useful at distances which are far from the source 

compared to the ocean depth, i.e. at distances r > > h . Then only the propagating 

modes need to be taken into account, and there are only a finite number of them. On 

the other hand the ray representation (3.28) is most useful near the source, where 

only the incident field and the first few reflected waves need to be considered be- 

cause the other waves are much weaker due to spherical spreading. The Hankel trans- 

form representation (3.23) is most useful at intermediate distances. Of course all 

three representations are valid everywhere, but they are not equally convenient for 

calculation everywhere. 

Since all three representations yield the same solution, they must all be equal. 

Therefore it must be possible to convert each representation into the other two re- 

presentations. This is indeed the case, as we shall now show. The demonstration 

will lead to additional insight into the mathematical structure of the solution, and 

clarify the relation between rays sad modes. Furthermore it will introduce methods 

of analysis which will prove useful in treating more complex problems. 

Let us begin with the Hankel transform representation (3.23) in which we set 

1.(I).(2), 
Jo = 2(nO ~nO J to obtain 

3.29 

® 2 i/2 2 112 
I °( ( sin[k(l-a ) z>]cos[k(l-a ) (z<+h)] 

p(r,z) = - ~w [H l)(kar)+H 2)(kar)] 
(l_~)ll2cosEkh(l_a2) 1/23 

ada 

Since all the functions in the integrand of (3.29) are analytic functions of a, we 

may interpret the integral as a line integral in the complex a plane. Therefore we 

can shift the path of integration to a contour C I from the origin to infinity 

slightly below the real axis out to some large real value of a, and then along the 
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axis. (See Figure 3.) Then we use the fact that H~2)(kar) = -H~l)(kaei~r) to con- 

vert the integral involving H(2)o along the contour C I to an integral involving 

ei~Cl .(I) and of -H (!) along . By taking account of the minus sign multiplying n o 
O 

the orientation of eiWC1 , we can write (3.29) in the form 

3.30 

t~ ~ sin[k(1-a2)i/2z>]c°s[k(l-a2)i/2(z< +h)] 

p(r,z) = - ~ I Ho~'(kar) ............. ada . (l_a2)l/2cos[kh(l_a2) 1/2] 
CI+C 2 

Here C 2 is eiWC1 with the orientation reversed. 

We now close the contour C 1 + C 2 with a semi-circle F R of radius R in the 

upper half-plane. (See Figure 3.) In the limit as R ÷ ~ , the integral (3.30) 

over PR tends to zero, so in this limit the value of the integral is unchanged. 

we can rewrite (3.30) as 

Thus 

3.31 p(r,z) = - ~ lira I .--da . 

R~ CI+C2+ F 

The denominator of the integrand in (3.31) vanishes at a = ±l and at the zeroes of 

cos[kh(1-a2) 1/2] . These zeroes are given by (3.8), and they are the poles of the 

integrand within the contour. The numerator vanishes at a = ±l, so these points are 

not poles. Then the residues of the integrand at the poles yield 

co 

3.3  p(r,z) -- - I 

(i) 2 !/2 2 I/2 
H ° (kanr)sin[k(1-an) z>]cos[k(l-an) (z<+h)] 

n=O khsin[kh(1-a~) 1/2 ] 

To simplify (3.32) we note that cos[k(l_a~)i/2(z<+h) ] o  = cos[k(l_a~)i/Rz< ] o  

c°s[k(l-a2)i/~]n - sin[k(l-a2)i/2z<]sin[k(l-a-2)l/2h]n " and in view of (3.8), 
n 

cos[k(1-a2n)i/~]- = 0. Upon using these facts in (3.32), we find that (3.32) becomes 

exactly (3.15), which is the normal mode representation. 

This calculation provides a derivation of the normal mode representation from 

the Hankel transform representation. Since all the steps in the calculation are re- 

versible, by reversing them we can derive the Hankel transform representation from 

the normal mode representation. These two derivations provide the connections between 
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the Hankel transform and normal mode representations, labelled "residue" in Figure 1. 

Next we shall show how to convert the ray representation (3.28) into the normal 

mode representation (3.15). We begin by rewriting (3.28) in the form p(r,z) = 

P(r,z-z o) - P(r,z+z O) where 

3.33 
P(r,z) = ~ ~ eik[r2+(z-2nh)2]l/2-in~ 

n=_~ [r2+(z-2nh)2] I/2 

Next we rewrite the sum in (3.33) by using the Poisson summation formula [Morse and 

Feschbach, Methods of Theoretical Physics, p. 467, eq. (4.8.28) with ~ = 2w] 

3.3 b, 
n=_~ q=-~ _~ 

Upon using it in (3.33) we obtain 

Co 

of 3.35 P(r,z) = ~ [ eik[r2+(z-~h/W)2]i/2-i~/2-iq~ d~ 

8w 2 Q=_~ _~ [r2+(z-~h/w)2] 1/2 

To evaluate the integral in (3.25) we set t = z - ~h/~ and get 

3.36 

-i(ql)z~/h'2 2 21/2 1 
P(r,z) = g~- e j e 

_QO 

--~X e H r 
(I=--Oo 

. (1) given in Appendix 3.5A. Here we have used the integral representation of n o 

We now use (3.36) for P in the relation p(r,z) = P(r,z-z o) - P(r,z+z o) • Then 

when we express the exponential functions of z smd z o as trigonometric functions, we 

obtain exactly the normal mode representation (B.15). In this way we can convert the 

ray representation (3.28) into the normal mode representation (3.15). Since all the 

steps in this calculation are reversible, the calculation also shows how the ray re- 

presentation can be obtained from the normal mode representation. These calculations 

yield the connection labelled "Polsson summation" in Figure l, between the rs~ and 

mode representations. 
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Finally we shall derive the ray representation from the Hankel transform repre- 

sentation (3.23). To do so we express the trigonometric functions in (3.23) in terms 

of exponentials and multiply them together to obtain four terms in the numerator. 

After dividing numerator and denominator by exp[ikh(1-a2) 1/2] , we can write the re- 

sult in the form 

3.37 p(r,z) = Q(r,z>+z<) - Q(r,-[z>+z<+2h]) - Q(r,z<-z>) 

+ Q(r,-[z<-z>+2h]) . 

Here Q(r,z) is defined by 

3.38 Q(r,z) = ~'wik [ 
4 

0 

Jo (kar)eik(!-a2)l/2z [ l+e-2ikh(l-a2)I/2] 
-1 

(l-a 2)-I/2ada . 

l+e_2ikh(l_a2)i/2 ]-i 
We now use the binomial expansion of the factor in 

(3.38) and interchange integration and summation, which is valid, to obtain 

co 

3.39 Q(r,z) : ~k ~ (_1)n I J°(kar)eik(1-a2)l/2(z-2nh)(1-a2)-l/2ada " 
n=O 0 

The integral in (3.39) is evaluated in Appendix 3.5A. When the result (3.45) is used 

in (3.39) it yields 

3.h0 Q(r,z) =-~ ~ (-l)nEr2+(z-2nh)2] -I/2 e ikEr2+(z-2nh)2]I/2 

n=0 

Now we substitute (3.40) into (3.37) and note that the first two terms in (3.37) com- 

bine to yield the last term in (3.28), while the second two terms in (3.37) combine 

to yield the first term in (3.28). Thus (3.28) follows from (3.37). 

This calculation shows how the ray representation (3.28) can be obtained from the 

Hankel transform representation (3.23). Since all the steps are reversible, it also 
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shows how the Hankel transform representation follows from the ray representation. 

Thus this calculation yields the connection between these two representations, 

labelled "binomial expansion" in Figure I. This completes the demonstration of all 

the connections between the representations indicated in Figure 1. Most of the 

derivations indicated in Figure 1 are given by Brekhovskikh [l] Chapter V, who 

also discusses various properties of the solution. 

3.5A ADpendix 

The integral in (3.36) can be evaluated by first setting t = r sinhe and 

= (q + ~)~/kh to obtain m 

oo 3.41 F eik[(r2+t2)l/2+(q+½)~t/kh](rR+t2)-l/2dt = I eikr[c°she+m sinhelde " 

_oo _~o 

Now coshe + m sinh8 = (1-m2)l/acosh[B+tanh-lm] = (l-m2)i/2cosh@ ' where 

8' = @ + tanh-lm , We next rewrite the last integral, simplifying the exponent with 

the aid of this relation, and then we set slnhe' = s/r to get 

I ~ .,. 2~i/2, 2+ 2~1/2 2 2 1"2 
3.42 e i~r(l-m2)I/2eOsh@'dS' = eiKi±-m ) [r s J (r +s )- / ds . 

According to Magnus and Oberhettinger [2] page 27, the last integral is Just 

iwH~l)[kr(1-m2) 1/2] , and thus this is the value of the first integral in (3.~1). 

To calculate the integral in (3.39) we begin with equations 5 and 6 on page 

761 of Gradshteyn and Ryzhik [3] • By adding i times equation 5 to equation 6 

we get 
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3.43 
. 2+ e I/2 

x(x2+z2)-l/2elk(x z ) Jo(kax)d x = (wz/2k)l/2(l_a2)-l/h 

0 

I -N_l/2(~z[!-a2]i/2) + iJ_i/2(kz[l-a2]l/2) }, 0 < a < 1 

= (2zl~x)l12(a2_l)-i/4Kl . . . I .(kzLa2_l] I'2) , 1 < a . 
12 

Next we use the expressions for J-l/2' N-I~2 end KI/2 given on pages 437, h38 and hh3 

of Abrsmowitz and Stegun [4] , in (3.43) to obtain 

3.h4 
2+ 2 112 

x(x2+z2)-l/2eik(x z ) Jo(ke~x)dx = -i (i a2)-l/2e Ikz(1-a2)l/2 ~- - 

0 

Since (3.44) is of the form (3.16), it is a Hankel transform. Then the inverse 

Hankel transform (3.17) yields 

3.h5 
= i, 2. 2,-1/2 ik(x2+z2) 1/2 ~(1-a2)-l/2eikZ(l-a2)l/2Jo(kax)ada ~x ~z ) e 

0 

The left side of (3.45) is the integral in (3.39)~ so (3.45) is the desired evaluation 

of it. 
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4. The inhomo~eneous stratified ocean of constant depth 

4.1 Introduction 

We shall now consider the acoustic pressure produced by a time harmonic point 

source in a stratified inhomogeneous ocean of constant depth. If the source location 

x is taken to be r = 0, z = z in cylindrical coordinates, then (2.B) becomes 
--o o 

4.1 Ap + k2n2(z)p = -~(Z-Zo)~(r)/2Wr . 

The surface condition is (2.4), 

4.2a p = 0 at z = 0 . 

Since the depth h is constant, the bottom condition (2.5) becomes 

4.2b Pz = 0 at z = -h . 

We seek that solution of (4.1) - (4.3) which satisfies a suitable radiation condition, 

which we shall state explicitly later. Since the problem is axially symmetric, the 

solution p(r,z) is independent of the angular coordinate 8 . 

Just as in section 3, we shall obtain three representations of the solution. 

The normal mode and Hankel transform representations are similar to the corresponding 

ones of section 3, while the multiple scattering representation corresponds to the 

previous ray representation. This representation involves the effects of upward and 

downward refraction due to inhomogeneity, as well as the effects of reflection from 

the top and bottom. We use the term "scattering" in describing it to indicate that it 

includes both of these effects. The ray representation of section 3 involved only re- 

flection, because the ocean was assumed to be homogeneous. The three representations 

are indicated in Figure 4. 

After obtaining the three representations, we shall show how they can be trans- 

formed into one another. These transformations are also indicated in Figure 4. Then 

in section 5 we shall obtain asymptotic expansions of these representations. They 



3"7 

SCATTERING 

E.4 IWKB 

ASYMPTOTIC MULTIPLE 
SCATTERING ' " 

4.4 

MULTIPLE I~ ,,, HANKEL ~ NORMAL 
MODES TRANSFORM 

5,2 WKB 
S 

5.5 5.5 
~SYMPTOTIC ~-  ASYMPTOTIC 
HANKEL TRANSFORM ~, NORMAL MODES 

Figure 4. The boundary value problem is solved by the method of normal modes in sub- 

section 4.2, by Hankel transformation in 4.3, and by the multiple scattering method in 

4.4. This yields the three representations indicated by normal modes, Hankel trans- 

form and multiple scattering, respectively. These representations are transformed 

into one another in 4.5. Then with the aid of the WEB method, asymptotic forms of 

these representations are obtained in 5.2, 5o3 and 5.4. They are converted into one 

another in subsection 5.5. A simpler asymptotic form of the multiple scattering re- 

presentation is deduced in 5.4.1. This same representation is derived directly by 

the ray method in section 6. 
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lead to a better understanding of the solution and are also useful for calculation. 

~.2 Normal modere~resentation 

As in sub-section 3.2, we shall seek the solution p(r,z) of (4.1) and (h.2a,b) 

as a sum of normal modes. Each normal mode is a product solution ¢(z)$(r) of the 

homogeneous equations. Substitution of such a product into the homogeneous form of 

(4.1) and separation of variables yields the two equations 

~.3 ¢zz + k2n2(z)¢ = k2a2¢ ' 

4.4 ~rr + r-l~r = -k2a2~ " 

The separation constant has been written as ka for convenience. When the product 

solution is substituted into the boundary conditions (~.~a,b) , they become 

~.~ ¢(0) = o , Cz(~h) ~ 0 . 

The problem (~.3) and (4.5) has an infinite number of simple real eigenvalues 

2 2 2 
a 0 > a I > a 2 > .., and corresponding eigenfunctions ¢0,¢1,"" which form a complete 

orthogonal set. There are a finite number of positive eigenvalues and infinitely 

many negative ones, with a 2 tending to -~ as n increases. We shall take a > 0 if 
n n 

2 a > 0 and Im a > 0 if a 2 < 0 . Then the solution $(r) of (~.4), which satisfies 
n n n 

the radiation condition (3.10) with a = an, is a constant multiple of H~l)(ka~r) , 

(1) ka r) Just as in sub-section 3.2. Thus the normal modes are AnCn(Z)K ~ ( n , where 

A is an arbitrary constant. 
n 

In view of the completeness of the Cn(Z), we can write p(r,z) in the form 

~.6 p(r,z) = n=~0 An$n(z)H(Ol)(kanr) " 

To find the A we substitute (h.6) into (h.l) and use the relation (3.12) to obtain 
n 
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-- . 

n=0 

We now multiply (4.7) by ¢m(Z) and then integrate the result from z = -h to z = 0 . 

Because the Cn(Z) are orthogonal, this yields 

4.8 

0 

%--~¢n(Zo)/I Cn2(z) dz • 

-h 

Now (4.6) can be written as 

0 

h.9 p(r,z) ~ ~ Cn(Z)~n(Zo)H(ol)(kanr)/I 2 = ¢n(S)dS . 
n=O 

-h 

This is the normal mode representation of p(r,z) . 

Just as in sub-section 3.2, the finite number of terms in (4.9) with a real re- 
n 

present propagating modes, while the remaining terms represent evanescent or non- 

propagating modes. For kr large, only the propagating modes are significant, so 

then p can be calculated easily from (4.9). For all r, (h.9) shows that p is symmet- 

ric in z and z 
o 

4.3 Hankel transform representation 

Now we shall proceed as in sub-section 3.3 to obtain the Hankel transform repre- 

sentation of the outgoing solution of (4.1) and (4.2a,b). First we multiply each equa- 

tion by 2WJo(kar) and then integrate the result from r = 0 to r = ~ We also denote 

the Hankei transform of p(r,z) by p(s,z), In integrating (4.1) we use the result of 

Appendix 3.3A. In this way we obtain from (4.1) - (4.3) the transformed equations 

4.10 Pzz + k2[n2(z)-a2]P = -~(Z-Zo) ' 

~.n. ~(ka, o) = o , 

4.12 pz(ka,-h) = 0 • 
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We now introduce two solutions ~l(ka,z) and ~2(ka,z) of the homogeneous form of 

(4.10), which satisfy (4.11) and (4.12) respectively. Then the solution of (h.lO) - 

(4.12) is readily found to be of the same form as (3.22), i.e. 

4.13 ~(ka, z) -- ~l(ka, z> )52(~a, z<) /W(~a) 

By applying the inverse Hankel transform (3.17) to (h.13) we get 

k2 I 2(ka'z<)[W(ka)]-lada h.lh p(r,z) = ~ Jo(kar)Pl(ka,z>)p 

0 

This is the Hankel transform representation of p(r,z), which can be used to calculate 

p numerically. 

4.4 Multiple scattering reDresentation 

A third representation of p can be obtained by considering the propagation of 

waves outward from the source, and taking account successively of their refraction by 

the medium znd reflection by the boundaries. Since both reflection and refraction 

are special kinds of scattering, and since they occur repeatedly, we call this the 

multiple scattering representation. We shall write it in the form 

4 . 1 5  p(r,z) = ~ q~(r,z) . 
n=O 

Here qo represents the direct wave from the source, ql represents a wave which has 

been scattered (i.e. reflected or refracted) once, and qn represents a wave which 

has been scattered n times. The series (3.28) for p in a homogeneous ocean is exactly 

of the form (h.15) if the terms with in are combined to yield qn " In that case only 

reflection occurs, and the muAtiple scattering representation becomes Just the multi- 

ple reflection representation. 

One way to obtain a multiple scattering representation of p in an inhomogeneous 

medium is to express p as a Born expansion in powers of n2(z) - n2(Zo ) . Then the 

term q n is ann-fold integral over the ocean, and therefore it is not easy to evaluate. 
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Another procedure, which we shall use, is to obtain a representation of the form 

(4.15) in which %n is only asymptotically an n times scattered wave. Here asymptotic 

refers to the limit of small wavelength i = 2w/k, i.e. to k large. To find this 

representation we first apply the Hankel transform to the problem, thus converting it 

to (A.10) - (h.13). Then we seek a multiple scattering representation of the solu- 

tion ~ of this problem. 

In order to construct this representation, we introduce two particular solutions 

of the homogeneous form of (4.10), which we denote U(ka,z) and D(ka,z) . The solu- 

tions U(ka,z) and D(ka,z) are characterized by the properties that asymptotically for 

ka large, they represent upward and downward traveling waves in the neighborhood of 

z o , respectively. We normalize them so that their Wronskian W(U,D) has the value 

4.16 W(U,D) = -2ik . 

We now use U and D to construct the term q ° in the Hankel transform of the 

series (4.15), by solving (4.10) without regard to the boundary conditions. We 

readily find 

4.17 qo(ka,z) = U(ka,z>)D(ka,z<)/(-2ik) . 

When qo is incident upon the upper boundary z = 0 , it produces a downward traveling 

wave proportional to D(ka,z), which we shall write as Rl(ka)D(ka,zo)D(ka,z)/(-2ik) • 

To find R 1 we set qo + RiD(ka'zo)D(ka'z)/(-2ik) = 0 at z = 0 in accordance with 

(4.11), and find that R 1 is given by 

4.18 Rl(ka) = -U(ka,0)/D(ka,0) . 

Similarly, when qo is incident upon the lower boundary z = -h it produces an upward 

traveling wave which we shall write as R2(ka)U(ka,Zo)U(ka,z)/(-2ik). Then we set 

Szq ° + R2U (ka,Zo)BzU(ka,z)/(-2ik) = 0 at z = -h to satisfy (4.12). This yields 
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4.19 RR(ka,z) = -SzD(ka,-h)/BzU(ka,-h) • 

Upon adding together the two reflected waves produced by qo we get ql ' which is 

given by 

4.20 ql(ka,z)~ = ~-i [Rl(ka)D(ka,Zo)D(ka,z)+R2(ka)U(k a,z o)U(ka,z)] . 

By continuing to calculate the successively scattered waves in the same way, we 

find that qn is given by the following formulas, from which the argument ka is omitted 

4 • 21 
+ m+~m+ 

We now sum the qn given by (h.21) to obtain p(ka,z). 

Hankel transform (3.17) to the sum to obtain p(r,z). 

of S~mmation and integration, we find 

Then we apply the inverse 

Upon interchanging the order 

4.22 p(r,z) = 

co 

m=0 ~ I Jo(kar) (RiR2)mu(ka'z>)D(ka'z<) 

0 

m+l + (RIR2) U(ka,z<)D(ka, z>) + R~+iR2mD(ka,z>)D(ka,z<) 

lmRm+lu ( ) ] + R 2 ka,z<)U(ka,z> ada . 

In (4.22) R 1 and R 2 are given by (4.18) and (4.19). 

The result (4.22) is the multiple scattering representation of p(r,z). The 

four types of terms in the integrand have the following interpretations for z > Zo: 

The term(HiR~mU(z)D(z o) represents a wave which travels upward from the source, is 

reflected m times at each boundary, and is traveling upward at z. The term 

(RiR2)m+iU(zo)D(z) represents a wave which travels downward from the source, is re- 

flected m+l times at each boundary, and is traveling downward at z. The other 
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two terms represent waves which leave the source going in one direction and pass 

through z in the opposite direction after m reflections from one boundary and m+l re- 

flections from the other boundary. Wherever we have said a wave is reflected, we in- 

clude the possibility that instead it is turned by refraction before reaching the 

boundary. This will become evident when we determine the asymptotic form of each 

term in the next section. 

4.5 Connections between the representations 

We have obtained three representations of the solution p(r,z) of (4.1) - (4.3). 

Now we shall show how they can be transformed into one another. We shall first show 

how the Hankel transform representation (4.14) can be transformed into the multiple 

scattering representation (4.22). To do so we note that the functions Pl and P2 in 

(4.14) can be expressed as follows in terms of the functions U, D, R 1 and R 2 which 

occur in (4.22): 

4.23 

~.24 

Pl(ka, z) = U(ka, z) + Rl(ka)D(ka, z) , 

pR(ka,z) = D(ka,z) + R2(ka)U(ka,z) . 

To verify these relations we note that both sides of each equation are solutions of 

the homogeneous form of (4.10). Furthermore from the definition (4.18) of R 1 it 

follows that the right side of (4.23) satisfies (4.11), while from the definition 

(4.19) of R 2 the right side of (4.24) satisfies (4.12). Thus Pl and P2 can be defined 

by (4.R3) and (4.24). 

We next substitute these expressions for Pl and PR into (4.1h). In doing so we 

note that W(Pl,P2) = (I-RIR2)W(U,D) = -2ik(l-RIR 2) . Then (4.14) becomes 

4.25 p(r,z) = ~ Jo(kar)[U(ka,z>)+RiD(ka,z>)][D(ka,z<)+R2U(ka,z<) ] 

0 

(I-RIR2) -1 add . 
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(I-RIR2) -I by the binomial theorem, and then interchanging the order Upon expanding 

of summation and integration, we find that (h.25) becomes exactly (4.22). %~nus the 

Hankel transform representation has been transformed into the multiple scattering 

representation. Since all the steps in the transformation are reversible, the re- 

versal of them yields the for~s~r representation from the latter. These transforma- 

tions are indicated in Figure h, where they are labelled "binoralal expansion". 

Now we shall show how the Hankel transform representation (h.14) can be con- 

verted into the nor~l mode representation (~.9). First by proceeding as in section 

3.5 we rewrite (4.14) in the following form, which is analogous to (3.31): 

4.26 

CI+C2 +F 

The contour C ! + C 2 + F is shown in Figure 3. Next we denote by a m , m = 0,i,2,... 

the roots of the equation W(ka) = 0 which lie in the upper half of the a-plane. 

These roots are all simple and they are the only poles of the integrand of the integral 

in (4.26) in the upper half-plane. Therefore a residue evaluation of that integral 

yields 

4.27 Ik ~ H(1)Ckanr)~iCkan, Z>)~2Ckan,Z<)iW,(kan ) . p(r,z) = --~ o 
n=0 

Since W(ka n) : O, it follows that Pl(kan,Z) is a multiple of P2(kan,Z) • 

Therefore both Pl and P2 are multiples of the eigenfunction ~n(Z) , so we sh811 

write Pl(kan,Z) = Sn(Z) and p2(kan,Z) = enSn(Z) where en is a constant. In Appendix 

h. SA we show that 

0 

-h 

When these results are used in (h.27) it becomes (h.9). Thus the normal mode expan- 

sion is obtained from the Haakel transform representation. By reversing the steps, 

the latter representation can be obtained from the former. These transformations are 

indicatedby the line labelled "residues" in Figure h. This completes the derivation 
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of the relations shown in that figure. 

4.5A Agpendix 

We shall now evaluate W'(ka n) where W(ka) = plBzP2 - p2BzPl . Since W is inde- 

pendent of z, we can evaluate it at z = 0 where Pl = 0 to get W(ka)= -P2(ka,O)BzPl(ka,O). 

We next write the homogeneous form of (4.10), which is satisfied by P2(ka,z), and 

write (4.3) with a = an, which is satisfied by ¢n(Z). We multiply the first equation 

by Cn(Z) and the second by P2(ka, z) and then substract the two to obtain 

4.29 ~z[¢n(Z)~zP2(ka,z)-P2(ka,Z)Bz~n(Z)] = k2(a2-a~)P2(ka,Z)¢n(Z) . 

Upon integrating (4.29) with respect to z from z = -h to z = 0, and using the boundary 

conditions (4.5) and (4.12), we get 

0 

~.30 _~2(ka,O)~zCn(O) = ,2, 2 2, [ ~2(ka, Z)¢n(Z)d z 
~a-a n ) 

-h 

Now we solve for P2(ka,0) in the expression above for W(ka) and substitute the result 

into (4.30). Then by rearranging factors, we get 

~z~l(ka,O) 0 
4.31 W(ka) = k(a+an) I P2(ka'Z)~n(Z)dz " 

k(a'an) Bz~n (0) -h 

Finally we let a tend to a and the left side of (h.31) becomes W'(ka), since 
n 

W(ka n) = 0, while the right side becomes the right side of (h.28). This proves 

(4.28). 
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5. Asymptotic representations for an inho~geneous stratified ocean of constant depth 

5.1 Introduction 

We have obtained three representations of the acoustic pressure due to a point 

source in an inhomogeneous stratified ocean of constant depth. Now we shall obtain 

the asymptotic forms of those representations, which are valid when the wavelength is 

small compared to the other lengths of the problem. These other lengths are the range 

r, the bottom depth h, the source depth Zo, and the vertical distance over which the 

sound velocity changes appreciably. Analytically this is equivalent to assuming that 

k is large. The asymptotic forms are simpler to use, easier to calculate with, and 

permit an intuitively appealing interpretation of the results. 

The asymptotic forms of the modal and Hankel transform representations involve 

the WKB asymptotic forms of the solutions of certain ordinary differential equations. 

The asymptotic form of the multiple scattering representation involves the stationary 

phase evaluation of certain integrals. The result has a direct interpretation in 

terms of the rays of geometrical acoustics. After deriving these asymptotic forms, 

we shall show the connections between them. 

In section 6 we give a direct geometrical derivation of the asymptotic represen- 

tation by means of rays. This ray representation will be shown to be the same as the 

asymptotic form of the multiple scattering representation, which thus provides a 

Justification of it. The main virtue of the ray method of derivation is that it also 

applies to nonstratified inhomogeneous oceans of variable depth. 

As we shall see, the asymptotic results depend upon the form of the function n(z) 

and the source depth z o . We shall assume that n(z) has the form shown in Figure 5, 

and that the source is located in the sound channel, as is indicated in the figure. 

5.2 Asymptotic form of the modal representation 

5.1 

The representation of p(r,z) in terms of normal modes is given by (4.9) which is 

°  , Cs ds. p(r,z) = -~ SmCZ)(~m(Zo) 
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r i I 

n(O) 

z - O  

z ~ -h 

O C E A N  B O T T O M  

Figure 5. The qualitative form of the refractive index profile n(z) assumed in section 

5. The source is supposed to lle within the sound channel. 
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The eigenvalues a m and eigenfunctions Cm(Z) are solutions of (4.3) and (4.5). 

Their asymptotic forms for k large are determined in Appendix 5.2Abythe WKBmethod. 

There are three different asymptotic forms, each applicable to one of the intervals 

[0,n(-h)), (n(-h),n(0)), (n(0),nmax) ] within which the real eigenvalues lie. Here 

n = max n(z) . The values of the integer m for which each form applies are those max 

for which the corresponding eigenvalue lies in the appropriate interval. 

The three asymptotic forms are listed below, together with the eigenvalue equa- 

tion and the values of the normalization integrals obtained by using them: 

0 < a < n(-h) 
m 

~n -amJ cos k (n 2- , -h < z < 0 , 

-h 

0 

5.3 k I (n2-a2m)l/2dz = (m + 1)n , 

-h 

0 0 

5.4 I Sm2(Z)dz ~ I 2 2-1/2 ~ 1 (n -a m) dz . 

-h -h 

5.5 

n(-h) < a m < n(O) 

Z 

,m(z ) ~ , 2 2,-11~ [k 
~n -amJ cos I 

Z 
m 

~0 

(2_ )112 z, _ z <z<O, 
m 

-h<z<z m _  

5.6 

0 

k I (n2-~)i/2dz = (m +~)z , 

Z 
m 
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5.7 

0 0 

f+, f 
-h Z m 

(n2_a2)- i /2dz 
m 

Here Zm is the root of n(Zm)- = ma" 

5.8 

n(O) < a < n 
m max 

,m(,.)- ~n-am~ o o s  

Z 
m 

<n<@'/'dz'- Z < S < Z I 
m m 

~ 0 • -h --< z < z m , 

5.9 

5.1o 

~ 0 

Z I 
m 

( - m = (m + 

Z 
m 

Z ! 
0 m 

f+z ~ 1 (n - % )  ~z 

-h z m 

Z' < z <0 
m 

Here z is the smaller and z' the larger root of n(z) = a The above formulas 
m m m 

are not valid at the turning points z and z' . In addition, we shall use the 
m m 

f o l l o w i n g  a s y m p t o t i c  form o f  t h e  Hankel  f u n c t i o n :  

5.11 h ( 1 ) ( k a m r )  (2/~kamr) 1/2 iCkamr-~/~) 
0 " e 

We now substitute the above formulas into (5,1)o The result can be written 

in the following form: 



5-12 ~ ( r , z )  1 

(2"r fkr) l /2 
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z 

"<.mr+':'" r,<i. q [kS ° q e cos (n2 -a2 ) l / 2dz - l r /  cos (n2 -a2 ) l / 2dz -~ /  
L ' Z  I n  ..w !-. Z Ill 

a >n(-h) 
m 

zm<z, Zo<ZA 

m m 

............... z ! 

2 2 1 / ~  2 2 iI~ m 2 2 112 In (z)-%] In (Zo)-am] f [aml(n-am)] dz 
Z 
m 

i 

am<n(-h) 

Z 

2 2 1 / 2  e _ _! (n-a m) dz] 

0 
2 2 1 / ~  2 2 l l ~  In (z)-%] In (Zo)- %] f 2 2 i/2 [aml(n -am)] az 

-h  

Here we define Z'm = 0 + when there is only one root of n(z) -- a m • This result (5.12) 

is the asymptotic form of the normal mode representation of p(r,z). Only a finite 

number of modes are propagating, and for kr large they are the only ones that need be 

taken into account in evaluating the sum. 

The result (5.12) is not valid when either z or z 0 is equal to either z m or z' 
m ' 

because the asymptotic forms of the ¢m(z) given above are not valid then. This de- 

fect can be overcome by using other asymptotic forms of $m(Z) in thin boundary layers 

around the turning points. These boundary layer asymptotic forms, which involve Airy 

functions, are used to derive the WEB connection formulas employed in Appendix 5.2A 

in getting the above asymptotic forms of ¢m(Z) . A different method of overcoming 

the defects, which we shall use instead, is to represent ¢m(Z) by a uniform asymptotic 

form valid both at and near a turning point as well as away from it. Such a uniform 

asymptotic form is derived in Appendix 5.3B, and also involves Airy functions. When 

there are two turning points, this asymptotic form is only semi-uniform, since two 

different forms are valid around the two turning points. 

The uniform or seml-unlform asymptotic forms of Ca(Z) Just described, together 

with the corresponding equations for the eigenvalues a , are: 
m 
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5.13 

0 < a < n(O) 
-- m 

Cm(Z) ~ [Sz(Z)] -1/2 {Ai[-k213S(z)]-Ai'[-k213S(-h)]Bi[-k2/3S(z) ]IBi'[-k213S(-h)]} 

5.14 Ai[-k213S(0)]Bi'[-k2/3S(-h)] - Bi[-k2/3S(0)]Ai'[-k2/3S(-h)] = 0 . 

Here S(z) is defined by 

5.15 S(z) = [ fz 
z 
m 

[n2(z,)_a~]ll2dz ' } 2/3 

In the interval 0 ~a m < n(-h), (5.13) and (5.14) are asymptotically equivalent to 

the simpler WEB formulas (5.2) and (5.3), but the latter are not uniformly valid for 

a close to n(-h) . When -k-2/BS(-h) >> l, (5.13) and (5.14) simplify to 
m 

5.16 Cm(Z) ~ [Sz(Z)]-I/2 Ai[-k2/3S(z)] , 

5.17 AiE-k2/3S(0)] = 0 . 

In the interval 0 < a < n(-h) , the turning point z lies to the left of -h (i.e. 
-- m m 

z < -h) , and is obtained by continuing n(z) into the interval z < -h . 
m 

z 
m 

< 
n(O) < a m nma x 

For -h _< z < Z'm ' (5.13) holds with a m determined by (5.21). 

< z < 0, Cm(Z) is given by 

For 
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5.18 Cm(Z)~ Cm[-~z(Z)]-i/2{Ai[-k2/3SS(z)]-Ai[-k2/3~(O)]Bi[-k2/3~S(z)]/Bi[-k2/3~S(O)] 1 . 

Here 8(z) and c m are defined by 

z' 2/3 

5.19 S(z) = [n2(z ' )-am]l/2dz' , 

z 

5.20 m 2 , 2 1/2 , Cm= in [n2(z')-a2] I/2dz - AiE-k2/3S(0)3 cos [n (z)-am] dz 

m Bi[-k2/3S(0)] z m 

-1 

The equation for am is 

Z ~ 

m 

When -k-2/3~S(0) >> 1 and -k-2/3S(-h) >> 1 , then c m ~ (-i) TM , (5.21) reduces to 

(5.9), a n d  

5.22. Cm(z) ~ (-i) TM [-~z(Z)] -I/2 Ai[-k2/3~(z)] . 

The two asymptotic forms (5.13) and (5.18) are asymptotically equal in the inverval 

z m < z < Z'm ' where they are both valid. Neither is valid for am near nmax, when 

the two turning points are close together. 

To obtain the semi-uniform asymptotic form of the modal representation of 

p(r,z) , we use (5.13) and (5.18) for Cm in (5.1), together with (5.11) for H (1)o 

When both z and z ° are below the height Zma x at which n(z) attains its maximum, ¢m is 



given by (5.13). 

becomes 
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If in addition -k-2/3S(-h) >> l, and -k-2/3~(0) >> i, then (5.1) 

5.23 p(r,z) i 
(8wkr) 1/2 

ika r+iw/4 
xX e m 

[amSz(Z)Sz(Zo)]-i/2Ai[-k2/3S(z)]Ai[-k2/3S(Zo ) ] 
z 
max 0 

I  z  -  2c-k2/3s zlJ z- I Is J-1Ai2E-k2/ (   dz 
-h z 

m~x 

Similar but more complicated formulas hold for other ranges of z and z , and these 
o 

formulas cover all values of z and z However the fact that p is given by several 
o 

different formulas means that none of them is uniform. Furthermore the eigenvalues 

and eigenfunctlons may be inaccurate for the smallest values of m , when the two 

turning points are close together. 

To obtain a completely uniform asymptotic form for p we must obtain a completely 

uniform asymptotic form for Cm(Z) . At the same time this will improve the accuracy 

of the lowest eigenfunctions. An alternative method for improving the accuracy of 

these eigenfunctions is to introduce a different representation for Cm ' involving 

Weber or parabolic cylinder functions, in a boundary layer around the two nearby 

turning points. But since a completely uniform form for ¢m can be constructed with 

parabolic cylinder functions, we shall construct it instead. 

The uniform asymptotic form of $m(Z) Just referred to is derived in Appendix 

5.2C. It is 

5.24 CmCz) ~ [SzCZ)]-ll2{u[_kl2,(2k)l/2s(z)] 

-U[-kl2,(2k)ll2s(o)]V[-kl2,(2k)l/2s(z)]/V[-k/2,(2k)l/2s(o)] I • 

Here U and V are parabolic cylinder functions, defined in Abramowitz and Stegun [4] 

page 687, while S(z) is defined by 
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5.25 

z 

z 
m 

[n2(z')-a~]I/2dz ' . 

The eigenvalue am is the m-th root of the equation 

5- 26 U'[-k/2,(2k)l/2s(-h)]V[-k/2,(2k)l/2s(o)] 

-U[-k/2,(2k)i/2S(0)]V'[-k/2,(2h)I/2s(-h)] = 0 . 

In (5.26) S is defined by (5.25) with am replaced by a and z m replaced by z(a) , the 

root of the equation n(z) = a . 

By using (5.2h) for Cm(Z) in (5.1), together with (5.11) for H (1) we obtain a 
o 

uniform asymptotic form of the modal representation of p(r,z) . From it p can be cal- 

culated for all values of z and z o . Furthermore by expanding the parabolic cylinder 

functions in it asymptotically, we can recover from this the other smymptotlc forms 

of the modal representation given in this sub-section. 

5.2A Appendix 

We shall now obtain an asymptotic form of the eigenfunctlons Sm~Z), valid for k 

large, by the WKB method. To do so we shall first find the asymptotic forms of the 

upgoing and downgoing waves U and D , defined in sub-section 4.4, because we shall 

need them later. Then we shall use these forms to find Sm(Z) asymptotically. The 

differential equation satisfied by U, D and ~m is (4.3), which is 

5.27 ~zz + k2[n2(z)-a~]~ = 0 

We seek a solution ¢ which, for k large, is asymptotically of the form 
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5.28 $(z) - e i~(z) ~ (ik)'JAj(z) . 

J=0 

Substituting (5.28) into (5.27) and equating the coefficient of each power of k -I to 

zero yields 

5.29 S 2 = n2(z) - a 2 , 
z 

5.30 2Sz(Aj) z + SzzA j = -(Aj_l)zz , J = 0,I,'-.~ A_I E 0 . 

The solutions of (5.29) which vanish at z are 
o 

5.31 S(Z) = ± 

z 

I (n2_a2)l/2dz ' 
z o 

The general solution of (5.30) is, with bj an arbitrary constant, 

5.32 
{ I z } Aj(z) = [n2(z)-a2] -I/4 j - 2 I- [n2(z')-a2]-l/&[Aj.l(Z')]z,z ,dz' 

z 
o 

Upon using (5.32) and (5.31) with either sign in (5.28), we obtain the asymp- 

totic expansions of two solutions of (5.27). These expansions are valid provided 

n2(z) - a 2 does not vanish. This is the case if 0 ~ a < n(-h) . The two solutions 

are Just U(ka,z) and D(ka,z) . If we set b o = 1 , their leading terms are 
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z 

ik zl (n2-a2)i/2dz ' 

5.33 U(ka, z) ~ [n2(z)-a2] -I/4 e o 

z 

-ik zl (n2-a2)i/2dz ' 

5.3)4 D(ka,z) ~ [n2(z)-a2] -I/4 e o 

, - h < z < 0  , 

, - h < z < 0  . 

Then by using (5.33) and (5.34) in (4.18) and (4.19) we get 

0 

2ik z! (n2-a2)i/2dz 

5.35 Rl(ka) ~ -e 

5.36 

z 

2ik I ° (n2-a2)i/2dz 

-h 
RR(ka)_. ~ e 

To get ¢m we form a linear combination of U and D which asymptotically satisfies 

the boundary condition Cz(-h) = 0 . This can be written as 

5.37 

z 

Here we have set a = a m , where a m is determined by the condition $(0) = 0 . This 

condition yields the eigenvalue equation 

5.38 

0 

-h 

m = 0,1,2,''" 
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Let us now consider a in the interval n(-h) < a < n(0) , in which case there 

is exactly one turning point z(a) which satisfies n[z(a)] = a . Then U and D are of 

the form (5.33) and (5.34) in the interval z(a) < z ~ 0 , sad it is convenient to re- 

place the lower limit of integration z by z(a) in those equations. For z < z(a) , 
o 

U and D are linear combinations of the two solutions corresponding to the two signs 

in (5.31). To find the appropriate linear combination we use the WKB connection 

formula, which is (Morse and Feshbach [5] Vol. II, page 1097) 

5.39 (n2-a2)-I/h[A coslk 

z z 

(n2-a2)i/2dz l~ w B k (n2-aR)i/2dz - 12 ,z z(a) 

z(a) z(a) 

k 

i/2(a2-n2) -I/4 e -i~14 (B-A) e 

z(a) 
f (a2 n2)i/2dz 

z 

z(a) 

+ (A ei~/6+B e - i ~ / 6 ) e  , 

This relation holds when n 2 - a 2 > 0 for z > z(a) and n 2 - a 2 < 0 for z < z(a) , 

in the present case. Here A and B are arbitrary constants. 

We now use (5.33) and (5.34) for U and D in the interval z > z(a) , with z o 

placed by z(a) . Then we use (5.39) to find them for z < z(a). In this way we 

obtain 

z<z(a). 

as 

re- 

z 

ik I (n2-a2)l/2dz 

5.40 U ~ (n2-a2) -1/4 e z(a) , z(a) < z _< 0 , 
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~ _ i (a2_n2)  - 1 / 4  
k I z(a) 

z 
e 

( a2_n2 ) I/2dz 

, -h < z < z(a) , 

z 

-ik I 

5.41 D ~ (n2-a2) -1/~ e z(a) 

(n2_a2)i/2dz 

• z(a) < z i 0 

z(a) 

(a2_n2)-I/4 z 

(a2-n2)i/2dz -k 

-ie 

z(a) 

I (a2_n2)dz, 

z 
, -h ! z < z(a) . 

Then (4.18) and (2.19) yield 

5.4.2 

0 

2ik zla) (n2-a2)i/2dz 

R I ~ -e 

z(~) 

-2k I (a2-n2)l/2dz 

5.43 R 2 ~ e -i~/2 + e -h ~ e-iW/2 

By forming a linear combination of U and D to satisfy $z(-h) = 0 asymptotically, 

setting a = a m and z(am) = z m , we get 

[,i z 5.4h Cm(Z) (n 2 a2)-i/h 2 2 i/2 ~ - cos (n-am) dz- , z m< z <0 

z m 
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-k I zm (~-n2)i/2dz - i~/4 

~ (a2-n2) -lI~" e Z 

m 
h< z<z 

-- m 

The condition Cm(O) = 0 leads to the eigenvalue equation 

5.~5 

0 

k [ (n2-a2m)i/2dz = (m + ~)m[ , m = O,1,2,.-- 

Z 
m 

Next we shall consider a in the interval n(O) < a < Then there are two nma x 

turning points z(a) and z'(a) satisfying n[z(a)] = n[z'(a)] = a , with n 2 - a 2 > 0 

for z(a) < z < z'(a) . Again U and D are of the form (5.33) and (5.34) with z re- 
O 

placed by z(a) in the interval z(a) < z < z' (a) . To find them for z < z(a) we use 

the connection formula (5.29). To find them for z > z'(a) we must first modify the 

connection formula by replacing z(a) by z' (a) and then interchanging z'(a) with z 

because n 2 - a 2 > 0 for z < z'(a) . Then we use the modified formula. In this way 

we obtain 

z'(a) 

ik I (n2-a2)l/2dz 

5.46 U ~ e z(a) (a2_n2)-i/h" 

Z 

× ~' (a) 

(a2_n2)i/2dz -k 

-ie 

Z 

S 
z'(~) 

z'(a) < z < 0 , 

Z 

ik zla) 
(n2_a2)-l/4e 

(n2_a2)i/2dz 

, z(a) < z < z'(a) , 
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k 

~ -i(a2-n2) -I/4 e 

z(~) 
I (a2_n2)i/2dz 

z -h < z < z(a) , 

5.47 

-ik 

D ~ -i(a2-n2) -1/4 e 

z'(a) 

ZI~) (n2-a2)l/2dz + k !,(a)(a2-n2)i/2dz 

- ik  
(n2-a2) -I/4 e 

Z 

zI~) 
(n2_a2)l/2dz 

z'(a) < z!O , 

z ( a )  < z < z ' ( ~ )  , 

(a2_n2)-l/& 

z(a) 

Z 
e 

(a2_n2)i/2dz -k 

-i e 

z ( a )  

(a2_n2)l/2dz 

z 

-h < Z < z(a) . 

Now (h.18) and (4.19) yield 

5.48 R l ~ 

z'(a) 

21k zla) 
e 

(n2_a2)i/2dz 
0 

-2k 5 
J Zf(a) 

e -±~z2 - e 

~ e 

z'(~) 

-iw/2 + 2ik [ (n2-a2)l/2dz 

z(a) 

5.49 R2~ 
-2k i (a) (a2-n2)l/2dz 

e -I~/2 - e -h ~ e-i~/2 

(a2_n2)l/2dz 
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To get Cm(Z) we again form a linear combination of U and D to satisfy Cz(-h) = 0 

and ~(0) = 0 asymptotically. Then writing a m instead of a , z(a m) = z m and 

Z'm = z'(am) we get the following result for Cm and the eigenvalue equation: 

Z ! Z 

ik tn -a m ) az -k (am-n) dz - i~/k 

Z Z I 

5.50 Cm(Z) ~ -i(a2-n2) -I/h e m • 

z v < Z < 0 , 
m 

z 

~ ~n-am) cos k %n-amj az- , z m 

Z m 

Z 

a 2 n2)l/2dz 
m( _ _~ 

~k 

, 2 2~-i/~ Z 
~ ~am-n J e , -h 5. z < z m 

Z ! 

5.51 k -a m ) az = (m + ~ , m = 0,1,2,''" 
z 
m 

Finally we treat a > nma x , in which case there are no turning points and no 

eigenvalues or eigenfunctions. Then (5.33) - (5.36) are valid, but U and D are 

exponential and not oscillatory. 

5.2B Appendix 

The asymptotic form (5.~4) of the eigenfunction ~m' which holds when there is 

one turning point z(a) , is not uniform. It consists of two different formulas, 

neither of which is valid at the turning point. To obtain a uniformly valid asymp- 

totic expansion of ~m we seek ¢ in the form 
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5.52 ,(z) ~ wE-k2/~<~)~ ~ ~-2J~j<z) + ~/~,E-k~/3SCz)~ ~ ~2JCj<z) . 
J=O j=o 

Here S, Bj and Cj are to be determined, while W(t) is a solution of the Airy equation 

5.53 w"(t) - tw = 0 . 

The form (5.52) is a special ease of that given by Lynn and Keller [6] sad is 

esentially due to Langer [7] • 

We now substitute (5.52) into the equation (5.27) satisfied by # , and equate 

to zero the coefficient of each power of k . The first two powers yield 

5.54 SS 2 - n 2 + a 2 = 0 , 
z 

5.55 2Sz(Bo) z + BoSzz = 0 . 

The real solution of (5.54) which vanishes at z(a) is given by (5.15) with z(a) re- 

placed by z Then the solution of (5.55) is, apart from an arbitrary constant 
m 

factor, 

5.56 Bo(Z) = [Sz(Z)]-l/2 

For W we write a linear combination of the Airy function Ai and Bi , and then 

the leading term in (5.52) becomes 
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¢(~) - [s(~)]  -1/2 IAiE-k2/3S(z)] + c Bi[-k2/3S(~)] t " 

When the constant c is chosen to make #z(-h) ~ O , (5.57) becomes (5.13). Then the 

condition ¢(0) - O yields the eigenvalue equation (5.14). 

5.2C 

When there are two turning points, the asymptotic form of @m is given by (5.13) 

and (5.18) for different ranges of z . We can obtain a uniform expansion of ~ in 

this case by seeking ¢ in the form 

5.58 ¢(,). W[(2k)~/2S(s)] ~ k-J~j(,) + k-3/~'[(2k)l/2s(,)] ~ k-JCj(,) 
J=0 J=O 

Again S, Bj and Cj are to be found while W(t) is a solution of the parabolic cylinder 

equation 

5.59 W"(t) + ~ (2k-t2)W(t) = 0 . 

Upon substituting (5.58) into (5.27), and equating coefficients of the two 

highest powers of k , we get 

5.60 S2(S2-I) + n 2 - a 2 = 0 , 
z 

5.61 2Sz(Bo) z + BoSzz = 0 . 
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The solution of (5.60) is given by (5.25) in which z(a) is replaced by z m , and the 

solution of (5.61) is, apart from a constant factor, 

5.62 Bo(Z) : [Sz(Z)] -I/2 

The solution W of (5.59) can be written in terms of the functions U and V defined in 

Abramowitz and Stegun [4] page 687, and then the leading term in (5.58) becomes 

5.63 ¢(z) - [Sz(~)]-l/21~[-k/2,(2k)l/2s(z)] + c V[-k/2,(2k)l/2s(z)] 1 

The constant c must be chosen to make ¢(O) ~ 0 , and then (5.63) becomes (5.24). 

Then the condition Sz(-h) = 0 yields the eigenvalue equation (5.26). 

5.3 Asymptotic form of the Hankel transform representation 

We shall now obtain the asymptotic form of the Hankel transform representation 

(4.14) of p(r,z) . To do so we shall Just replace the functions in the integrand of 

(4.14) by their WKB asymptotic forms, which can be obtained from the results of Appen- 

dix 5.2A. In sub-sectlon 5.5 we shall convert this asymptotic form into a series of 

integrals, which is the same as the asymptotic form of the multiple scattering repre- 

sentation to be obtained in sub-section 5.4. In sub-section 5.h.1 we shall evaluate 

these integrals asymptotically by the method of stationary phase. The resulting 

series is the same as that which will be obtained by the ray method in section 6. 

The functions Pl and P2 ' which occur in (4.14), are given by (4.23) and 

(h.2h) in terms of U, D, R 1 and R 2 . The latter functions are given asymptotically, 

in Appendix 5.9A, by different formulas in four different ranges of a . Therefore 

we must divide the range of integration over a in (4.14) into these four ranges, and 

use the appropriate asymptotic forms in each range. Thus let I 1 be the interval 
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0 !a < n(-h), 12 the interval n(-h) < a < n(0), i 3 the interval n(O) < a < nma x 

and 14 the interval a > nma x . Then we can write (4.1h) in the form 

5.64 p(r,z) = ~ p(i)(r,z) i=! 

where 

= k 2 [ Pl(ka'z>)P2(ka'z<) 
5.65 P(i)(r'z) ~ Jo (kar) W(ka) ada . 

i. 
I 

In (5.65) we use for Jo its asymptotic form 

5.66 Jo(kar) ~ (2~kar)-i/2(eikar-iw/4+e "ikar+i~/h) . 

We also use (4.23) and (h.24) for Pl and P2 with U, D, R 1 and R 2 given by those 

formulas in Appendix 5.2A which are valid in I i . In this way we obtain the following 

four results: 

5.67 

k ] !/2 
P(1)(r'z) ~ [2-~r J 

0 
i(_h ) sin[k z! (n2-a2)l/2dz] 
0 cosC ar- En 

(n2-a2)i/2dz] 

-i I (n2 a2)l/2dz] al/2da cos [k -h 
, - h < z < O .  
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5.68 

oos[  
oos[  

Z< (n2"-a 2)I/2dz _ "n ] 

.I 
o al/2da • z(~)<z <_0 

~ 0 , - h ~ z < z ( a )  

5.69 p(3)(r,z) ~ 0 

k ll/2 nmax 

z'(a) < z < 0 , 

z'(a) ~] 
cos(kar - [k I (n2-a2)i/2dz ~)eos 

z> 

z(a) (n2"a2)l/2dz - ~] cos[k [z< 

cos[k ,z'(a) I 1 (n2-a2)l/2dz~ 

z(a) J 

al/2aa z(a) < z<z'(a), 

~ 0 , -h!z < z(a) . 

5.70 p(h)(r,z) ~ 0 , -h < z < 0 . 

Finally the asymptotic form of p is given by (5.64) with the p~ijt ~ given by 

(5.67)-(5.70). From (5.70) we see that p(4) is exponentially small, so it can be 

omitted from the sum for p, which then consists of Just three integrals. 

In sub-section 5.5 we shall show how this result can be converted into the asymp- 

totic forms of the normal mode and the multiple scattering representations, and also 

how it can be obtained from them. 
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5.4 Asymptotic form of the multiwle scattering representation 

The multiple scattering representation (4.22) of p(r,z) can be expanded asymp- 

totically by using (5.66) for Jo(kar) and the formulas for U, D, R 1 and R 2 given in 

Appendix 5.2A. There are four sets of these formulas corresponding to four different 

intervals of the parameter a. Therefore we must first split each integral in (4.22) 

into a sum of four integrals over these four intervals, and then use the appropriate 

asymptotic forms from Appendix 5.2A in each integral. After proceeding in this way, 

we can write the asymptotic form of (4.22) in the form 

+ ± 
5.71 p(r,z) = ~ I Pi(r, z) = I I I Pij(r, z) • 

i=l ± i=l J=l ± 

5.72 

+ 

The function p?.j in (5.71) is defined by 

+ 

i/2 ~ ±iw/4+ikSij(r,z,a;m) 
m ~ e al/2da 

(-i) aiJm j 2 2 i/4 2 2 1/4 ' 
m=O I In (z)-a ] [n (Zo)-a ] 

i 

i = 1,2,3, z in R i , 

+ 

Pij(r,z). ~ 0 , z not in R i 

+ 

P4j(r,z) ~ 0 , -h < z < 0 . 

The coefficient aij m 

table: 

, the range R i and the interval I i are given in the following 

5.73 i alj m R i I i 

i (-!) j-1 [-h, O] [0, n(-h)] 

2 (-eiW/2) j-I e -imp/2 (z(a), O] [n(-h), n(O)] 

3 (-i) j-I for J = 1,2; e -i~/2 for J = 3,4. (z(a), z'(a)) In(0), nmax] 
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The function S~j 
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in (5.72) is defined as follows: 

z 0 

I I I) 5.7h Sij +ar + (-l)J-I > - = + 2(m+J-l) (n2-a2)i/2dz , J = 1,2 . 

z< -h 

i> 
For J = 3 or h , S+j~ is given by (5.74) with J replaced by J-2 and replaced by 

0 0 z< 

f; + S2j is obtained from Slj by replacing the lower limit of integration 

z 0 z 
+ + 

-h by z(a) . S3j is obtained from S~j by replacing the limits of integration -h and 

0 by z(a) and z' (a) respectively. 

Thus the asymptotic form of the multiple scattering representation of p(r,z) is 

given by (5.71) with the p+j given by (5.72). Each term in this sum for p has an in- 

terpretation as a multiply scattered wave, Just like the terms in (4.22). In the 

next sub-section we shall simplify (5.72) further by evaluating all the integrals 

asymptotically for k large, using the method of stationary phase. The result has an 

interpretation in terms of rays. It will be rederived directly by the ray method in 

section 6. 

In sub-section 5.5 we shall show how (5.71) can be obtained from (5.64), the 

asymptotic form of the Hankel transform representation, mud also how (5.71) can be 

S .... ed to yield (5.6h). 

5.4.1 Explicit asymptotic form of the multiple scatterins, representation 

Now we shall evaluate the integrals in (5.71) asymptotically for k large. This 

will yield a simpler asymptotic form of p(r,z). To evaluate them we shall use the 

method of stationary phase, which is explained, for example, in Erdelyi [8] . 

+ 
First we note from (5.72) that p~j ~ 0 . Next we find that the phase function S~j 

has no stationary points, so PiJ ~ 0 . Therefore (5.71) can be written as 

3 h + 
5.75 p ( r , z )  ~ ~ ~ p 

i = l  J=l  iJ  
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+ 

Now we shall evaluate the integral (5.72) for p~j by stationary phase. 

From (5.7k) we find that the stationary points of the phase function S + 
l J  

J = 1,2 satisfy the equation 

5.T6 i i > r°l r = a (-i) j-I + 2(m+J-l) (n2-a2)-l/2dz 

z< -h 

, J = 1,2; m = 0,1,2,''" . 

Let a = b m be the root of (5.76) for m = 0,1,2,... The second derivative of S~j 

with respect to a , evaluated at a = bm, occurs in the stationary phase result. From 

(5.74) we obtain for it 

5.77 lJ (-1) j-1 + 2(m+J-1) n2(n2-b2m)-3/2dz J = 1,2 
~a2 . . . .  

z< -h 

stationary points of all the other - 3 + The lJ satisfy the equations obtained from (5.76) 

2+ 
by the r ep l acem en t s  d e s c r i b e d  a f t e r  ( 5 . 7 4 ) .  Also  3 S l j / ~ a 2  ~ J = 3 ,4 ,  i s  g iven  by 

+ 
(5.77) with the same replacements. However the second derivatives of the other Sij 

cannot be obtained from (5.77) because for them one or more of the limits of inte- 

gration are zeros of n2-a 2 and that would lead to singular integrals 

+ 

To calculate the second derivative of S2j , J = 1,2 we first replace -h by z(a) 

in (5.74) and then differentiate once to obtain 

Ba = + 2(m+j-1) (n2-a2)'l/2dz , J = 1,2 . 

z< z(a) 

We now add to and subtract from the integrand the quantity n2(n2-a2)-I/2/a . In 

the subtracted term we write n 2 as (n/n') nn' and integrate by parts to obtain 
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5.79 ~a = r+(_l)j_ 1 p(z<) --V- 
112 ~(z>) 1121 

[n2(z<)-a 2] - [n2(z )-a 2] ! a > 

-2(m+J-1) t 112+ 1 +2(m+J-l) (l+p P(0la_ [n2(0)-a2] ~ (-l)J-i 

Z< Z a) J 

,)(n2_a2)l/2dz ' 

J = 1,2 . 

He re 

5.80 p(z) = n(z)/n'(z) • 

Differentiating (5.79) and setting a = b m yields 

5.81 
2 + ~ p(z<)n2(z<) 

S2j = (-i)JI'2""''2 2 1 /2  
8a 2 bm[n (z<)-b m] 

P(z>)n2(z>) } 
+ 2 2 2 112 

bm[n (z>)-b m] 

i z> fo} + 2(m+J-1) P(O)n2(O) 1 ( l+p')n 2 
b 2 n 2 0 b 2 1/2 + 7 (-1) ' j /  +(2m+~-l) ; ~ ] 2,3/2 dz , 
m [ ( )- m ] m z< Z(~m ) ~n-Om~ 

J = 1,2 . 

8~$I~rI~ we find 

2 + 
9.82 ~ $23 = - P(z0)n2(z0) P(z)n2(z) 

~a 2 m [ ( o )- m ] - b 2 n 2 z b 2 1/2 bm2[n2(z)_bm2]I/2 

+ (2m+2) i °i ° i ° 
p(O)n2(O) 1 + + 2m (I+P ' )n 2 

'~ 2 ~2,i/2 d~ . 
~n -o m) 
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5.83 
32S~4 P(z0)n2(z O) 0%z)n2(z) ~(0)n2(0) 

~a T =  b2[n2(z~)_b2]I/2 + b2[n2(z)_b2]i/2 + ~ . b'2[n2(O)_b2] I / 2  
m u m m m m m 

0 0 0 j 
I  l 0,n2 (n 2 b2)!/2 

z0 z z b m) - m 

dz 

We a&so find that a2S~j/8a 2 is given by the same expression as ~2S~j/Ba2 with 0(0) 

replaced by 0 and with the upper limit 0 replaced by z'(bm) . 

With these preliminary calculations completed, we can apply the stationary phase 

+ 
formula to PiJ given by (5.72). The result is 

I 2 + ]-1/2 
112 

+ i ~ (-l)maijm b m r 5.84 Pij(r'z) ~~-~m=O Sa 2 

n 2 ( z 0 ) -b n 2 ( z ) -bm 2 e , 

i = 1,2,3; z in R. . 
i 

~ 0 z not in R .  
I 

By using (5.84) in (5.75) we obtain the desired explicit asymptotic form of the 

multiple scattering representation of p(r,z) . 

5.5 Connections between the asymptotic forms of the representations 

We have now obtained asymptotic forms of the modal, Hankel transform~nd multi- 

ple scattering representations of p , as well as a simpler asymptotic form of the 
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latter. These four asymptotic forms are indicated in Figure h. We shall now show 

how these different asymptotic forms can be transformed into one another. The trans- 

formations are also indicated in the figure. 

Let us begin with (5.6~), the asymptotic form of the Hankel trausform represen- 

tation, which expresses p as a sum of the four p(i) • Each of the p(i) contains a 

cosine factor in the denominator of the integrand. We first rewrite these factors 

by using the following expansion, which is obtained by using the binomial theorem: 

cos x = -ix(l+e2iX ) (-1)Je(2J+l)x 
e J=O 

We also write the trigonometric functions in the numerators of the integrands in 

terms of exponentials. In this way (5.64) becomes transformed exactly into (5.71), 

the asymptotic form of the multiple scattering representation. By reversing these 

steps, we can transform the asymptotic form (5.71) of the multiple scattering repre- 

sentation into the asymptotic form (5.641 of the Hankel transform representation. 

These transformations are indicated by the line labeled "binomial expansion" in 

figure 4. 

We shall now show how the asymptotic Hankel transform representation (5.64), 

with the p(i) given by (5.67)-(5.70) can be converted into the asymptotic normal mode 

representation (5.12). First, as we have shown in sub-sections 3.5 and 4.5, we can 

write the asymptotic Hankel transform representation in the form 

5.85 p(r,z) ~ 
13/2 i/2 I i (kar-~/4) 

r---- lim e 
R~ 

CI+C2+ ~ 

• ~l(ka,z>)~2(ka,z<)w-l(ka)I/2ada . 

The contour C I + C 2 + FRis shown in Figure B. The functions PI' P2 and W(ka) are 
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given in sub-section 5.3 by different representations for different ranges of the 

real part of a. 

Let a = am, m = 0,I,2,'", be the roots of the equation W(ka) = 0 which lie in 

the upper half of the a-plane. Those real roots which lie between (0,n(-h)), 

(n(-h), n(0)) and (n(0), nma x) are the zeros of the Wronskian W(ka) of 31 , P2 given 

by (4.23), (4.24) with U, D, R 1 , and R 2 given by those formulas in Appendix 5.2A which 

are valid in I1, 12 and I 3 respectively. They are exactly the values given by (5.3), 

(~.6) and (5.9). 

We now compute the integral in (5.85) by the method of residues and obtain 

5.86 p(r,z) k ]1/2 al/2ei(kamr+~/4) ~l(kam, Z>)~2(kam, Z <) 

We next replace PI' P2 and W' by the representation appropriate to each value of a m 

Then we find that (5.86) simplifies to the asymptotic normal mode representation 

(5.12). By reversing the steps we can obtain the asymptotic Hanke! transform repre- 

sentation from the asymptotic normal mode representation. These transformations are 

indicated by the line labele "residues" in Figure 4. 

Next we shall show how to convert the simpler asymptotic form of the multiple 

scattering representation (5.75) into the asymptotic normal mode representation 

(5.12) [9]. First we use (5.73), (5.74) and (5.77) in (5.84) for i = J = i to obtain 

bl/2 

Pl! ~ - ~  
m=O 

Z< 

+ 2m n2(n2(n2-b)-3/2dz 
1/2 " 



Here we have used (-i) m = e -im~ . 

to get 
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We now sum this series by Poisson's formula (3,3h) 

5.87 
Pll ~ 8w2 q=_~ 

+ .~. 2 2 112 i~ I 
z !/2ike a~r + < W (n -a~) dz - 2 - "q~ 

oo 

J 
2 2 l / t~  2 2 z / 4  i 2 2 2 - 3 / 2  0 [n (z)-a~] [n (Zo)-a ~] r + ~ n (n -a~) 

u ~ Z< -h " 

l / 2 ' '  d~ . 

Here we have used the notation a[ _ = b~/2~ = b m The stationary points of (5.87) are 

de given by the zeros of ~= 0 where ¢ is the coefficient of ik in the exponent and it is 

= ~n -a~) az - 

z< -h 

> 

Since ~-- r - + ~ , ~ ~ , 1 / 2  ~z -- o 

z< -h tn -a~) 

the stationary points are given by ~= ~-= O. 

/__si 
2k k 

due to the equation (5.76) for J = i, 

This gives 

0 

I(n2-a~)i/2dz I ~= 0 . 5.88 ~ - 2-~ - k 

-h 

Since the solutions a~ depend upon q, this is the eigenvalue relation (5.3) if we 

. We now compute ~ d2@ and find designate a~ by aq d~ 2 
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5.89 d~2 = - , 2 2~I/2 dz d~ 
. %n -a~) 

In order to finder--, we differentiate the relation given by3-~= 0 with 

respect to ~ and obtain 

, .  = _ - [  2 2 z/2 > ] 2, ~ 2,-3/2 da~ 1 a~ (n -a~)- d + t 
d~ ~ j n ~n -a~) 

-h z< -h 

dz . 

By using this equation in (5.89), we get 

[i ]2 2 a - 1 / 2  a~(n -a~) dz 

5.90 d 2~_ 1 -h dz . 

z< -h 

By using (5.87) and (5.90), we find that the stationary point contribution in (5.87) 

yields 

+ 
5.91 Pll 

z> 

i k [aqr  + (n2 -a ) l /2az3  + • /h 

z< 
~ (32wk1.)-1/2 ~ e 

q n 2 z) 2 l14[n2(z a2 llh 
[ ( - qJ o )= q ]  

0 
I [aq/(n2-a2)]i/2dz 

-h 

Similarly we can show that 

+ 
5.92 Pl2 

z> 

z< 
~ (32~kr~ 1/2 [ ~ . . . . . . . . . . . . . . . . . . . .  

0 
q [n2(z)-a2]l/4[n2(Zo)-< ]1/2 I [aq/(n2 -a2) ] l /2dz  

q q 
-h 



76 

5.93 

ik[aqr +{ z0 + 

P13 + ~ - (32~kr)-i/2 [ e 0 

a2]i/4 In2 z a2] I/4 q [n2(z)_ q ( 0 )- q 

-h 

5.94 

0 
ik[aqr + + (n2-a~)i/2dz] + i~/4 

-h -h 
+ 

PI4 (32wkr)-i/2 ~ e 
~ 0 

q [n2(z)-a2]i/4[n2(ZO)-a2] I/4 [ [aq/(n2-a~)]l/2dz 
-h 

Then we add these four representations and after using (5.88) in this sum, we find 

that it is exactly the second term of the asymptotic modal representation (5.12). 
4 h 

Similarly we use Poisson's summation formula (3.34) in = [lP2J and [ P3J and then 
J J=l 

use the method of stationary phase in these representations. The stationary phase 

condition yields the eigenvalue relations (5.6) and (5.9). Finally we find that 

[ (P2J + P3J ) is exactly the same as the first term in the asymptotic modal repre- 
J=l 
sentation (5.12). Hence we have shown that the asymptotic modal representation 

(5.12) can be obtained from the simpler asymptotic multiple scattering representation 

(5.75). This derivation is indicated "Poisson summation" in figure 4. 

This completes the derivation of all the connections between the various repre- 

sentations shown in figure 4. 

6. The ray representation 

6.1 Introduction 

The exact and asymptotic representations of p in sections 4 and 5 have been de- 

rived for a horizontally stratified ocean of constant depth. We shall now explain 

how to obtain a representation of p for an unstratified ocean of nonuniform depth. 

We call it the ray representation because it is based on the rays of geometrical 

acoustics. Since it is based on rays, it is valid only when the acoustic wavelength 
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is small compared to the scale lengths of the refractive index variations and of the 

horizontal depth variations. 

First we shall describe how to construct the ray representation synthetically, 

by following a recipe or set of rules. These are the rules of geometrical acoustics, 

which have a clear physical significance and which provide an intuitively appealing 

picture of the process of wave propogation. Next we shall show how to obtain the 

ray representation analytically, by deriving it directly from the reduced wave equa- 

tion and the appropriate boundary conditions. Finally we shall specialize the ray 

representation to the horizontally stratified ocean of constant depth. Then it will 

become exactly the explicit asymptotic form of the multiple scattering representation 

given in subsection 5.4.1 by (5.75) and (5,8h). 

6.2 Gg~ometrical construction of the ray representation 

To construct the ray representation of p(~) according to geometrical acoustics, 

we must carry out the following steps: 

i. Determine all the rays from the source point ~0 to the field point x_. These 

include the direct ray, the rays refracted any number of times in a sound 

channel and the rays reflected any number of times at the top and bottom 

surfaces. To obtain a more complete representation, various kinds of 

diffracted rays and complex rays may have to be included. 

2. Calculate the optical length s(J)(~) of the J-th ray from ~0 to ~. 

B. Calculate the amplitude A(J)(~) of the field on the J-th ray at ~. This 

involves conservation of flux in a ray tube, reflection coefficients at 

the top and bottom surfaces, change of phase at a caustic, etc. 

h. Combine the fields A(J)(x) e ikS(j)(~) on all the rays through~ to obtain 

the ray representation of p(~) in the form 

6.1 p(~) ~ ~ A(J)(~)e ikS(j)(~) 

J 

On a complex ray, the phase s(J)(x) is complex and the corresponding field is 

evanescent. On a diffracted ray, the amplitude A(J)(~) is inversely proportional 

to some fractional power of k, so the corresponding field is weaker than that on an 
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ordinary ray. At a caustic associated with the J-th ray, A(J)(~) is infinite and a 

different expression for the field on that ray must be used. Both boundary layer 

theory and the uniform representation of Kravtsov and Ludwig provide correct expressions 

for this field. 

The J-th term in the sum (6.1) can he interpreted as the leading term in the 

asymptotic expansion for k large, of the field on the J-th ray. This will be shown 

by the analytic derivation of the field on the J-th ray in the next sub-section. 

Furthermore, that derivation will show how to construct further terms in this field. 

The representation (6.1) has been used widely to calculate p(~) in horizontally 

stratified oceans of constant depth. In this case the amplitude A(J)(~) can be ex- 

pressed in a relatively simple form in terms of the refractive index n(z). However 

(6.1) is not so convenient to use in the more general case of an unstratified ocean 

of either constant or non-constant depth. This is because of the numerical difficulty 

of solving the transport equation for the variation of the amplitude along a ray, 

since this equation involves the divergence of neighboring rays. As a consequence 

(6.1) has not been used widely in the case of an unstratified ocean. Therefore, the 

horizontal ray method of chapter III, and the parabolic equation method of chapter V, 

have been devised for use in the non-stratified case. 

6.3 Analytic derivation of the ray representation 

In the ray representation (6.1), the pressure p is represented as a sum of terms. 

Each term consists of a phase factor e ik$(~) and an amplitude factor A(~). We con- 

sider each such term to be the leading term in an asymptotic expansion of the form 

6.2 pox) ~ e iks(~) ~ (ik)-mAm(a) . 
m=0 

The coefficient A0(~) in (6.2) is Just the A(~) which oce~s in (6.1), and the other 

Am(~) represent corrections to it. We call the right side of (6.2) a wave. We shall 

first show how to determine S(~) and the Am(~) so that the wave (6.2) is an asymptotic 

solution of the reduced wave equation 

6.3 Ap + k2n2(~)p = 0. 
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Then we shall show how the initial values of S and the A are determined by the 
m 

source° Finally we shall form a sum of waves to satisfy the boundary conditions. 

We begin by substituting (6.2) into (6.3) and collecting the coefficients of 

each power of k. Then we equate each such coefficient to zero and obtain the follow- 

ing equations: 

6.4 

6.5 

(vs) 2 = n2~xj'' , 

2VS.VA m + AreAS = -AAm_ 1 , m = 0,i,'--, A_I - 0 . 

Equation (6.4) is the eiconal equation of geometrical acoustics, from which the phase 

function S can be determined. Then (6.5) form a recursive system of first order 

linear partial differential equations from which the A m can be found successively, 

starting with m -- 0 . 

To solve (6.~) we introduce a two parameter family of curved lines, called rays, 

~hich are orthogonal to the level surfaces of S. If we denote the parameters by a 

and ~ and let O denote arc!ength along a ray, then we can write the rays as 

6.6 x = x(~,a,¢) . 

The orthogonality of the rays and the level surfaces, which are called wavefronts, is 

expressed by 

dx 
6.7 -- 1 --= -- VS . 

do n 

We can eliminate VS by differentating (6.7) and using (6.~) to obtain 

=i 6.8 n~ (nd~) ~ Vn 2 . 

This is a set of three second order ordinary differential equations for x,called the 

ray equations. 

Now we can write (6.h) as an ordinar~J differential equation along a ray by using 

(6.7), which yields 

6.9 d S = n . 
do 

The solution of (6.9) is 
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6.10 

o 

S(o) = S(Oo) + [ n[x(o')]do' 

° 0 

Here S(G) is the value o£'S at ~(0), and the parameters a, @ have been omitted. 

Next by using (6.7), we can write (7.5) as the following ordinary differential 

equation along a ray 

dA 

6.11 2n~--P-+~ AmAS = -~--l~ ' m = o,i,..., A_I ~ o Q 

These equations are called the transport equations. The coefficient AS in (6.11) can 

be expressed in terms of J(G,a~) , the Jacobian of the trmusformation (6.6) from 

the ray coordinates G,a,~ to the cartesian coordinates 2, defined by 

J = I 6 . 1 2  

In terms of J, AS is given by [i0] 

6.13 AS = ~ (nJ) . 

We now substitute (6.13) into (6.11) 8md then solve (6.11) to obtain 

6.14 

1 1 1 2  r~ln<~,)jf~,l,,, 1/2 
_ i I ~l(°')d°' n(%)J(°°) I A~(~ o) ~ J In(~)J(~) Am(~) = n(~)J(~) 

G 0 

The results (6.10) and (6.1h) determine S and the A in terms of the rays and 
m 

the initial values S(a0) and Am(a0). These initial values are determined by condi- 

tions at the initial point of each ray. Thus for example, the direct wave involves 

rays which start from the point source at ~0 with phase S(~0) = 0 . If we set G 0 = 0 

then the initial conditions for ~are x_(0,a,~) =~0 and d~(0,a,$)/dG = ~(a,@) where 

U is a unit vector. These conditions and (6.8) determine the direct rays. Then 

(6.10) with the initial value S(0,a,$) = 0 determines S. To find the initial values 

of the Am, we introduce the source term -~(~-~0 ) on the right side of (6.3). Then 

we find that Ill] Am(0) = 0 for m = 1,2,--., and 
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6.15 
r tan el 1/2 

aO+ 0 

Here we have chosen the ray parameter to be a = n(~o) sin a where a and ¢ are the 

spherical polar coordinates. By using these results we can determine the direct wave 

completely. 

To satisfy the boundary condition (4.2a) at the top surface, we introduce a top 

reflected wave, which is also of the form (6.2). We then substitute the sum of the 

direct or incident wave and the reflected wave into the boundary condition, and equate 

to zero the coefficient of each power of k. In this way we find that at the boundary 

the reflected phase is equal to the incident phase and that each A m in the reflected 

Wave is equal to minus the corresponding A m in the incident wave. The phase condition 

leads to the law of reflection for the reflected rays and provides the initial con- 

dition for the reflected phase. This initial condition and the initial conditions 

for the A m enable us to solve for S and the Am on the reflected rays. This enables us 

to construct the top reflected wave completely. 

To satisfy the boundary condition on the bottom surface, we introduce a bottom 

reflected wave. We proceed similarly to substitute the sum of this wave and the inci- 

dent wave into the boundary condition. In this way we obtain initial conditions for 

the determination of the bottom reflected wave. 

Each wave reflected from one boundary may hit the opposite boundary. Then it 

leads to a new reflected wave which can be found in the manner described above. In 

this way an infinite sequence of multiply reflected waves can be obtained. 

The family of rays associated with any wave may have an envelope or caustic 

surface. Then the rays do not cross the caustic but turn away from it. The family 

of turned rays constitute a new refracted wave which is again of the form (6.2). 

This refracted wave is given by the same expression as the wave incident upon the 

caustic, but with a phase change of amount -z/2. 

The pressure p(~) is given by the sum of all the waves at ~. This includes the 

direct wave, the waves singly and multiply reflected at the top and bottom surfaces, 

the waves refracted one or more times, and the waves which are both reflected and 
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refracted any number of times. In addition there may be diffracted and evanescent 

waves associated with diffracted rays and complex rays, respectively. The sum of the 

leading terms of all these is Just the ray representation (6.1). 

6.4 The ray representation for the stratified ocean of constant depth 

We shall now apply the method of the preceeding sub-section to the special case 

of a stratified ocean of constant depth governed by (4.1) and (4.2). In this case the 

ray equations (6.8) become 

6.16 d2x' = 0 d2~ = 0 , 

d2 ' d~2 

d dz dn 
~'~ [ n(z) ~ ] = d'~" 

We multiply the last equation in (6.16) by ndz/dG and integrate to obtain 

2 2 2 
6.17 ( d ~ )  = n 2-a 

n 

Here the integration constant is Just a = n(z 0) sin a, where s is the initial angle 

between the ray and the z-axis. From the first tvo equations in (6.16), it follows 

that each ray lies in a plane normal to z = 0 . Since the rays start at the source 

~0 (0,0,z0),each ray lies in a plane y/x tan e constant. If we set r2=x2+y 2 

then it follows from this fact, (6.17) and the arclength condition (dx_/dG) 2 = 1 that 

2 2 
6.18 ( d r )  = a 

do 2 
n 

By combining (6.17) and (6.18) we obtain 

6.19 --dr = ±a 
dz (n2 a2)1/2 " 

Integrating (6.19) with r = 0 at z = z 0 yields 

6.2o r = ± _a2)1-7~dz = (n2_a2) 1/2 
z 0 z< 

In order to make r ~0, we have chosen the plus sign if z > z 0 and the minus sign if 

z < z 0 . The result (6.20) gives the equation of a direct ray from the source with 
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the ray parameter a . 

We next compute the phase S given by (6,10) with S(a 0) = 0 and obtain 

z 

I I °° 
6.21 S(r,z) = n[z(G')]d~' = n(z) d~--dz . 

~0 z0 

By using (6.17) for d~/dz with the appropriate sign, we get from (6.21) 

6.22 S(r,z) = i > n 2 
(£2_a2)i/~' as . 

z< 

Subtracting and adding a 2 in the numerator of the integrand, and then using (6.20), 

enables us to write (6.22) in the form 

6.23 

z> 

S(r,z) = ar + I (n2"a2)i/2dz " 

z< 

Now to find the amplitude A 0 we use (6.1h) with m=O and note that A i=0. We 

evaluate the Jacobian J by introducing the cylindrical coordinates (r,~,z) and the 

ray Coordinates (G,~,a). Then we write J = IS~ /B(r,$,z) I I~(r'~'z)/B( ~ ~,a) I . 

The first factor is Just r , and the second can be computed by using (6.17), (6.18) 

and (6.20). Thus we find 

6.24 J = ~(n2_a2) I / 2  i > n 2 
~ n 2 _ a 2 ) 3 / ~  d~ . 

z< 

We now use (6.24) and (6.15) in (6.14) to obtain 

a I/2 2 [ ? 6.25 Ao(r,z ) = ~ [n (ZO)-a2] -1/4 [n2(z)-a2] -I/4 r > 

z< 

n2 J (n2_a2)3/2 dz 

-1/2 

the direct wave is A0(r,z)eikS(r~z) with A 0 given by (6.25) The leading term in 

and S given by (6.23). This is exactly the same as the term with m=0 and i=J=l in 

+ ~i/~a2 (5.8h) for Pll(r,z) • To see this we first use (5.77) for ~2S with m = 0 in 

(5.8h). We then observe that (5.76) with m = 0 and J = 1 is the same as (6.20). 
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Therefore the root b m of (5.76) is Just the value of the ray parameter a for which 

the direct ray passes through (r,z) . Thus the identity of the two expressions is 

shown. 

By proceeding in the same way, we can calculate the leading term in each singly 

and multiply reflected and refracted wave. Each one turns out to be identical with 

one of the terms in (5.84). Thus the total field p(r,z) given by the ray representa- 

+ 
tion is exactly the same as (5.75) with the PiJ given by (5.84). 
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i. Introduction 

In recent years, there has been a growing interest in long-range, low-frequency 

acoustic propagation in the ocean. Very often three-dlmenslonal ray-traclng tech- 

niques are used to analyze this problem, but as the ranges increase and the frequen- 

cies of interest decrease, this kind of ray-tracing loses its effectiveness. 

The theory of normal modes offers an alternative approach. Pekerls [1S was the 

first to apply the t~eory to underwater acoustics and his results for shallow water 

were later shown to agree well with the experimental data gathered by Worzel and 

Ewlng [2S whose analysis was mainly concerned with dispersion. Tolstoy [BS later 

showed that wave-guide theory could be used to predict intensity levels in shallow 

water. However, the analyses of Pekerls and of Tolstoy require the medium to be per- 

fectly stratified, that is, the properties of the medium are assumed constant on 

horizontal planes. Pierce K4S extended the theory to media having a slow variation 

in the horizontal directions under the assumption that the coupling between modes can 

be neglected. This assumption is borne out to zero order in the slowness of horl- 

zontal variation by our analysis. The principal resultsof his calculations were that 
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different modes follow different horizontal paths and that the intensities along 

these horizontal rays satisfy transport equations in two space dimensions. 

In this paper we shall also be concerned with acoustic propagation in an almost 

stratified medium which we shall take to represent the ocean. The method consists 

in introducing a small parameter e representing the (slow) rate of variation of the 

medium in the horizontal directions. The velocity potential is sought in the form 

of an asymptotic power series in ~ where the vertical structure is expressed in terms 

of the normal mode eigenfunctions. We find an eikonal equation and a recursive 

system of transport equations for the coefficients which depend only upon the hori- 

zontal coordinates. This scheme is closely analogous to geometrical acoustics in 

two dimensions. It was first described by Kelle~5] and later used by Shen and 

Keller[6~ in the context of surface waves on water of variable depth. A similar 

theory has also been developed by Rulf[7] and by Bretherton[8]. Our method has much 

in comon with these but in the systematic use of the small parameter it is more in 

the spirit of the geometrical theory developed by Keller and his coworkers for scalar 

and vector wave equations[9,10]. The work reported here is a slight expansion of a 

paper by Weinberg and Burridge which appeared as reference[llS. 

In sections 2 and 3 we treat time-harmonic dlsturbances by considering solutions 

to the reduced wave equation. The small parameter c is introduced in section 2 where 

we suppose that the properties of the medium depend upon the horizontal coordinates 

X, Y only through the combinations x = ~X, y = ~Y. This being so we seek at first a 

solution where the velocity potential ¢ is expressed in the form 

co 

1.1 ¢(x,y,z;e) % e 8(x'y)/(i~) ~ Ag(x,y,z) (is) ~) , 
,m=O 

z being the vertical coordinate and a factor e_art,,i~,/t ~ is understood. Each A~ 

expanded in the eigenfunctions Sm(X,y~z) of a certain differential operator in 

whose coefficients depend parametrically upon x,y: 

is 

Z 

1.2 ~(x,y,z) = [ k %(x,y) ,k(x.y;z) . 
k= 0 
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A 0 is found to be a pure mode in that it is a multiple of a single eigenfunction ~p. 

An eikonal equation is found for e and then a recursive system of transport equations 

k 
are found for the a~(x,y). These equations are virtually identical to the corre- 

sponding equations for the ordinary geometrical wave theory in two dimensions. The 

leading term found in this way agrees with Pierce's solution. 

As usual (1.1) is not valid near caustics. The necessary modifications are 

discussed in section 3. There we draw heavily from the work of Ludwig[12] and 

Babich [ 1 3 ]  • 

In section ~ a more general time dependence is considered in connection with 

the full wave equation. We use a generalization of the ansatz (1.1) in which the 

phase function and the coefficients may depend upon t = ET in addition to the space 

variables. Attention there is restricted to the leading coefficient A0, which in 

practice yields a good approximation whenever the ray theory is valid. We consider 

the Airy phase, which is a space-time analog of the smooth caustic and suggest that 

some further work might be done in connection with the high frequency arrival or 

water wave and with modes propagating near cut-off. In this section at no further 

cost the wave speed is allowed to depend upon ET. 

Two typical special cases are studied in section 5. The first concerns acoustic 

propagation in an ocean with constant sound speed but where the bottom depth varies 

linearly with Y. The ray configurations are computed and plotted for various pro- 

pagating modes. Pierce[hi considered a similar model in which the reciprocal of the 

bottom depth varied linearly. In the second example the square of the wave number 

decreases linearly with depth. 

Finally in section 6 a realistic model ocean is considered. The acoustic am- 

plitudes are computed and found to agree well with real data. Also in section 6 is 

a brief description of the computer program which determines the normal modes, solves 

the ray equations, and finds the field quantities. 

2. Acoustic propagation in...~am ~ost strat%f%e ~ medi.um 

An almost stratified medium is a medium whose properties vary slowly with the 

horizontal coordinates, This notion is made precise by introducing a small 
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parameter C and supposing the wave number k depends upon X,Y, the horizontal coor- 

dinates, only through the combinations eX, eY. Moreover the boundaries will be 

taken as almost horizontal in the sense that on the boundaries the vertical coordi- 

nate Z will be given as a function of EX and eY. 

Hence if Ce i~T is the velocity potential in an almost stratified ocean then ¢ 

satisfies the reduced wave equation 

2.1 
8X 2 + 8y2 + 8Z 2 + 

in the region 

2.2 z-(zx, EY) < z < Z+(ax, cY) , 

where k 2 = ~2/c2 , c(¢X,eY,Z) being the sound speed. 

+ 
On the boundaries Z = Z-(eX, ~Y) we assume the boundary conditions take the 

form 

2.3 
÷ + 

~-(cX, EY) ¢ + 8-(gX, cY) ~ = 0 
8n ± 

where G± , ~± are real and 8/8n ± represents the outward normal derivative. 

2.4 

~z ± 
~z ~ ~ - ~z-+ 

- 8Y BY + ~¢ 

+ / 

In fact 

Upon introducing new coordinates in which the horizontal distances are con- 

tracted, 

2.5a x=eX , 

2.5b y--¢Y , 

2.~c z = Z , 



into the above equations we obtain 

2.6 V2~ - (iC) -2 L ¢ = 0 

90 

with boundary conditions 

2.7 + + ± ~ " 
~-(x,y)~ + 8-(x,yb (x,y~) ( + (i~)2Vz -+ v~) = o 

+ 
at z = Z-(x,y) . 

In (2.6) and (2.7) V is the horizontal gradient operator (~/~x , B/~y) , L 

is the operator given by 

2.8 

+ 
and y- is given by 

~z 

2.9 + I 
y-(x,y~¢) = 

By analogy with existing geometrical wave theory we shall seek $ in the form 

of a series 

2. i0 ¢(x,y,z;e) ~ e e(x'y)l(i¢) 

which is interpreted to mean that 

(is) ~ A~(x,y,z) , 
~=0 

(i~) ~ A v (x,y,z) is asymptotic to e -eli~ $(x,y,z;~) 
~=0 

as~÷O . 

Substitution of ~2.10) into (2,6) and boundary conditions (2.7) will lead in 

the usual way to an eikonal equation for 8 and to various transport equations. In 

order to perform the substitution we shall need 
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2. II 
V=O 

+ v%_ l) (i~) ~'I 

and 

2.12 

e 

~=o 
(re)2% + v2e%_1 + 2 re.v%_ 1 + v2%_ 2 ] (i~) ~-2 

where for convenience in notation A_I E 0, A_2 H 0 . 

Substitution into (2.6) now gives 

2.13 [~0>k ~+ ~ - ~  ÷ ~ ~°~+ ~] <~ o 
u=O 

+ 

Before substituting in the boundary conditions let us write y- as power series 

in i~ : 

2.1h 
+ 

7-(x,y;~) = Z y; (x,y) (ie) 2q , 

where 

-I121 -+ , 2.15 7q = (-x) q (vz-+) 2q 

q 

Hence from 2.7 

2.!6 ~-¢ + 8- Y~ + (i~) 2 Vz -+ • v¢ (i~)2q = 0 . 
q--O 

On substituting (2.10) into (2.16) and using (2.11) we have, after some rearrange- 

+ 
ment, that on z = Z-(x,y) 
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± 
2.17 (i8) ~ A~ + 8--" "(~ LazaA 

~=0 -- 

+ VZ- • VeA~)_2q_ 1 + VZ ± " VAv_2q_2 (ia) 9 =0, 

where ~i = [~/2], is the largest integer not greater than 9/2 . 

The assumption of the asymptotic nature of (2.10) allows us to equate to zero 

the coefficients of individual powers of ig in (2.13) and (2.17) to get 

2 . ! a  ( re)2"% - u v  + V 2 e A - 1  + 2re • VA_ 1 + V2A.~_2 = 0 , 

V = 0,i,2,..., 
+ 

and on z = Z- , 

2.19 ~ A v + [ ¥q + VZ-.VeAv_2q_l + VZ--VAv_2q - = 0 . 
q=0 

In (2.19) let us write the terms in AV on the left and separate the terms in 

A9_ 1 from the rest of the right side: 

2 .20  ~-.% + ~-Z-.-= - B - [ v z - . v e A ~ _  1 + ~ _ 2 ( x , Y ; A 0  . . . . .  A v _ 2 ) ] ,  ~ = 0 , 1 , 2 , . . . ,  

where 

2.21 
÷ + 

~_2(x,y~A0,.. ,%_2 ) = vz .VA~_ 2 + 
q 

± 
Yq 

+ VZ-'VSAg_2q_I + 

Upon setting v=O in (2.18) and (2.20) we obtain 

2 .22  (Ve)2A0 - LA 0 = 0 
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and 

+ B-- BA 
2.23 ~ - A  o + ~ = 0 . 

Equations (2.22) and (2.23) define an eigenvalue problem which shows that "'(VS) 2 is 

an eigenvalue of L and A a corresponding eigenfunction. 
o 

Let 

2.24 k2 2 2 
o ' Ii ' 12 ' "'" be the eigenvalues of L . 

We shall suppose that all eigenvalues are simple. Let 

2.25 $o ' $I ' ~2 ' "'" be the corresponding eigenfunctions 

normalized with respect to the inner product of (2.30). 

Suppose that 

2.26 ( r e ) 2  = ~ 2 ( x , y )  . 

This is the eikonal equation for 8 and may be solved for 8 by the method of charac- 

teristics. In fact (2.26) leads to the ray equations 

2.27a d__ (ipd~) = p 
ds ~x ' 

Bk 

2,. 27b d (tpd_d_d~s) = p ds By ' 

2.28 d8 ~= Xp , 

where 

~x 2 (A~s)2 1 . 2.29 (~) + = 

The rays are the curves satisfying (2.27a) and (2.27b) and the arc length is denoted 

by s. Once initial values of dx dy e are given at a point, (2.27a) and (2.27b) 
ds ' ds ' 
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~v 
can be integrated to obtain the ray whose initial direction is (~s- ~s , ) and ( 2 . 2 8 )  

can be (simultaneously) integrated to find e at points along the ray. We must, of 

+ ÷ 
course, already know I as a function of x,y . Notice that since L , ~- , 8- depend 

P 

continuously on x, y , so do the li " 

Before proceeding to find the equations for the A9 let us define an inner pro- 

duct on the space of functions of z, Z-(x,y)< z <Z+(x,y) . 

We set 

2.30 <f,g> = <f(x,y;z),g(x,y;z)> 

Z+(x,y) 

I f(x,y;z)g(x,y;z) dz . 

Z - ( x , y )  

It can readily be shown that the ~m of (2.25) can be normalized to satisfy 

2 . 3 1  <~m' Cn > = 6ran ' 

where 6 is the Kronecker delta. 

From (2.22), (2.25) and (2.26) it is clear that 

2.B2 Ao(X,y,z) = ao(X,y) Sp(X,y;z) . 

We shall now obtain a transport equation for a 
o 

get 

Set v = 1 in (2.18) and (2.20) to 

2.3B k~A 1 - LA 1 + V2eA ° + 2Ve.VA ° = 0 , 

a n d  

+ B+_ ~A I _8+_ 
2.34 ~- A I + ~--~---- vz-+.ve A o 

+ 
o n  z -- Z - C x , v ; "  " - - -  . 
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Now take the inner product of (2.33) with ~p : 

2. B5 kp2<*p, AI>- <*p, LAI> + V28 a o + 2VS"<~p, VAo> = 0 . 

But on using (2.23) and (2.34) we find that 

236 <,p, >-- - ao v0"E  vzl + 

where 

e. B7 p2 2 (x,y;Z +) + 2 (x,y;Z-)VZ-(x,y) . _ vz (x,y)- ~p [~ Vz] + -~p 

Also since <%, %> = i it follows on taking gradients that 

2.38 2<¢p,V~p> = _[~p2 VZ]+ 

Thus (2.35) reduces to 

2.39 ~e a + 2ve-va = 0 , 
o o 

which is the transport equation for a 
o 

Equation (2.39) may also be written as 

2 re) = 0 . 2.~0 V. (a ° 

On integrating (2.40) over a ray tube and using the divergence theorem we obtain 

2.41 a 2 6G is constant ~ong the tube, 
po 

where 6G is the cross-sectional width of the tube of rays. 
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From the Sturm-Liouville theory of self-adJolnt ordinary differential equations 

we know that the functions %' m=O,1,2, form a complete set. Therefore we shall 

assume that 

2.42 
k=O 

where G is any function satisfying the boundary conditions 

B± BG~ + + 
2.hB J %  + ~-~--= -B-[vz.ve%_ I + F~_2(x,y~Ao,... 

+ 
on z = Z-(x,y) . 

, % _ 2  ) ] 

k Suppose, now~ that the ~ are known for all k and ~ = O, i, 2, ..., ~ - 1 . 

Then we may determine G~ to satisfy (2.43). On substituting (2.42) into (2.18) and 

taking the scalar product with ~m ' m ~ p, we get 

2.~ C _- (~_ ~21-~ <%,~,~,,_~ ÷ 2~.%_ 1 ÷ ~2 %-2 ÷ ( ~ -  "%>' 
P 

To find a T we take (2.18) with V replaced by v + 1 and take the inner product 

with ~p to get 

2.45 p <~p~%+l > - <~p,LA~)+l> 

÷ We<%, %> + 2re.%, %> ÷ <%, v2%_f = 0 . 

But 

2. h6 [%%< ~ ]+ 
<%, LAv+l > = <L%, A~+I> + ~ -  BZ A~+l - 

r /~%+1 ~ )]* 
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so that from (2.45) 

2.47 v2e <,p, %> + 2 ve-<,p,v%> + <,p, v2%_1> 

Substituting (2.42) into (2.47) gives 

2.48 v2e a~ p + 2 v e . v a  p = - v2e.<%, %> -2ve.<~p, v%> 

k=0 

-I~pVZ'Ve<ki0 a~ k ~k + GVll ~ -I~P F~-II~ 

We now notice that the k = p terms in the two sums in (2.48) cancel so that the 

right member of (2.48) involves only functions already determined, including the a~ k 

P along a ray. for k + p . As usual the left member is a directional derivative of a9 

Thus (2.44) and (2.48) form a system from which the a~ cam be found recursively. 
v 

3. Uniform asymptotic expansions in re6ions containin 6 caustics 

We shall be concerned in sections 5 and 6 with the field due to a point source. 

The horizontal rays all pass through the source point and moreover in the examples 

treated these rays envelop curves called caustics. Whenever neighboring rays come 

together as at a point source or at a caustic the simple theory of section 2 becomes 

invalid in the neighborhood of the points of concurrence. In this section we shall 

show how the ray theory may be modified to treat first the field near a smooth caus- 

tic and then we shall discuss certain difficulties which prevent us from satisfacto- 

rily dealing with the point source. 

3.1 The field near a smooth caustic 

It will be seen in section 5 that in quite simple cases rays emanating from a 
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point source will envelop a caustic. When this occurs neighboring rays come to- 

gether and the theory of section 2 would predict an infinite amplitude. To obtain a 

valid approximation near a caustic we shall follow Ludwig [12] and seek an asymptotic 

expression for ¢ in the form 

3.1 

e 
¢ (x,y,z,~) ~ e i-~ 

~)=0 
(ic) v Av(x,y,z) V [a -2/3 p(x,y)] 

+ ( iC)  ~ (ia 113) Bv(x,y,z) V'[~ -213 p(x,y)]] , 

where V(~) is the Airy function of -~ and so satisfies 

3.2 

3.3 

v" (~) + ~v(~) = o . 

Substitution of the expansion (3.1) into (2.6) yields 

8 
ie e ( i 6 )  v -2  

9=0 
{[(ve) 2 + p(Vp) 2 - L] A v + 2pVp'~@B 9} V 

+ ( i 6 )  v -2  {[(re) 2 + O(VO) 2 - L ] B  v + 2Vp.VeA v} (to 1/3) V' 

+ ( i ¢ ) v - I { v 2 e A v  + 2Ve .V~  + pV2p B v + 2oVp'VBv+(Vp)2B v }  V 

+ ( i c ) v - l { v 2 6 B  

+ (i6) 9 V2A9 V + (le) 9 Bg(lel/3) V'] 

The boundary conditions (2.16) lead to 

e 
3." e ~" ~ (ie)V { ie 1/3 V' 

~=o ~(A v V + B v ) 

+ 8 [ yq V + i¢ I/3 
q=O 

+ 2ve.vB v + V2oA + 2Vp.VA v}  (f~ "1/3) V' 

= 0 • 

BBv-2q V, 1 
BZ 

+ (pVp'VZ B)_2q_ 1 + VS"VZA)_2q_ 1 + ~TZ'VA~_2q_2 )V 

+ iE1/3 (Vp'VZAv_2q_l + Ve'VZB~)_2q_l + VZ'VBv_2q_2)V~I= 0 , 
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on z = Z(x,y) where for clarity we have dropped the superscript ±, and 91 = [912] as 

usual. 

Equating coefficients of (ie) 9 V and (i£) 9 (ic 1/3) V' in (3.3) separately to 

zero we obtain 

3.5a [(VS) 2 + p(Vp) 2 - L] A v + 2OVp.VOB~ 

+ V2eA~_~ + 2re-rAy_ 1 + ~V20~_I  + 2 ~ V ~ - ~  + (Vp)2~_~ 

+ V 2 Av_ 2 = 0 , 

and 

3.5b [(re)2 + p(Vp)2 _ L] B V + 2Vp.VeA 

+ V2%Bv_ 1 + 2V0-VB,~_ i + V2pA.~_I + 2Vp.VAv_ 1 

+V 2 = 0 B~)_2 • 

Similea'ly (3.4) gives 

~)I [~A 

q=O 

+ PrO" VZB,~_2q_ 1 

and 

+ V8 ° VZA~_2q_I 

3.6b ~B ÷S [ Yq[ ~z +Vp.VZA 
q=0 ~-2q-1 

÷ ve-v~_2q_ l ÷ vz.%_2~_ 2 ] 

+ VZ.VA~_2q_21 = 0 , 

=0 . 
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Once again separating terms in A , B v from the rest we get 

3.7a ~ + 8 ~ : - 8[PVP'VZB9_ 1 + V@'VZA~_ 1 + E~_ 2] 

~B~ 

3.7b (~ B v + 8 ~ = - ~[VP'VZA~_ 1 + V0"VZBv_ 1 + FV_2] 

where EV_ 2 , F~_ 2 depend on A , B , 0 < W < v - 2 but not A~_I, A , %-1 ' B . 

Setting 9 = 0 in (3.5a), (3.5b), (3.7a), and (3.7b) we see that, if we require that 

3 .8  r e . v 0  = 0 , 

then 

3.9 (re) 2 + p~Vp)  2 " "  = X 2 
p '  

where k 2 is an eigenvalue of L and A , B 
p o o 

conditions 

are eigenfunctions of L with the boundary 

3.10a 

3.10b 

~A 
A o + 8 ~z ~ = 0 $ 

3B 
+ 1 3  o ~B ° - ~ - z  = 0 . 

Therefore we set 

3.11a A 0 ( x , y , z )  = a0(x~ ,y )  S p ( X , y ; z )  , 

3.11b B0(x,y,z) = b0(x,y) ~p(X,y;z) 

On setting V = i in (3.5a) and(B.5b) and taking inner products with ~p we obtain 

+ V2ea + 2pVp.Vb ° + pV2pb ° + (Vp )2b  ° = 0 3 . ! 2 a  2 v e ' V a  o o 
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and 

+ V2ebo + 2Vp.Vao + V2pao = 0 3 • 12b 2re • ?b ° o 

As in section 2 the boundary terms have canceled by virtue of (3.7a) and (3.Tb) 

with 9 = 1 . 

We note that (3.8), (3.9), (3.12a), and (3.12b) reduce, as they should, to the 

corresponding equations given by Ludwig [ll] when we set ~2 = 1 . Following Ludwig 
P 

let us write 

3.13 e ± = e ± 213 p3/2 , 

and 

± p l /2  
3.14 a = a ± b 

O O O 

(Here ± refers to whether or not the ray has touched the caustic and has no connec- 

+ 

tion with the superscripts referring to the boundaries Z-.) Then it follows from 

(3.8) and (3.9) that 

3.15 (V8±) 2 = X 2 . 
P 

By forming the linear combination (3.12a)±pl/2x(3.12b) we also have 

3.16 2VS±.Va~  + [V28  ± ~ 1/2 p-1/2(Vp)2]  a ± = 0 
0 5 

which reduces to 

3.17 2ve±.v (p - l / l *  ± ( p - l / l *  ± do) + v2e ± do) = o . 

+ 

Thus e- may be found by solving the ordinary elkonal equation. The combinations 

+ 

p - l / l *  a -  a r e  s e e n  t o  s a t i s f y  ( 3 . 1 7 ) ,  t h e  o r d i n a r y  ze ro  o r d e r  t r a n s p o r t  e q u a t i o n .  
0 
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p-1/h a ± a ± 
At the caustic 0 becomes zero and become infinite in such a way that 

o o 

remain finite. 

For A9 , B~ with 9 > 0 we set 

3.18a 
k=O 

3. Z8b 
k 

B9 = b9 ~k + H9 , 
k=O 

3.19a Gv + 8 ~ = - 8[#VP'VZBg_ 1 + V@'VZA9_ 1 + Ev_ 2] , 

3.19b %. s ~ = - S[Vp-VZAv_z + ve.vzBv_ z + %_2] 

Now suppose a u ~ b k are known for all ~ = i, 2, ...~ ~) - 1 and all k . Then G~ and 

vH may be chosen to satise (3.zga) and (3.~9b). For ~ , b ~ , k + p we use (3.~a) 

and (3.5b) 

p 

+ pV2pB~_ 1 + 2pVp'VBv_ 1 + (Vp)2Bg_l 

+va%_2- (~-s )%>,  

3.20b b~m = ( t~ - 12) - lp_ <~m'V2eB~-z + 2Ve'W'~-I 

+ V2 A _ I + 2V VA _ l 

+ V2B~ 2 (t2 L) 
_ - P - H> . 

For a p , b p~ we replace ~ by ~ + i in (3.5a) and (3.5b) and take inner products 

with ~p . It is convenient to treat the terms in (3.5a) separately: 
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by (3.7a). 

3.22 
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% , [ ( v e ~  2 * ocvo~ 2 - =] A~.l> = % , ( ~  - ~ A . f  

-1 [~p(~A. 1 ~ ~A~.l)]_. =--g • 

+ E + = [%(pv~.vzB,~. ve.vzA ) % ,~_l ]_ 

=[~ ~' bk%*~ ,~ *  V0" 9Z~p v 
k=0 

• ve-vz% ? % + E * 
2 o  ~ % *%~ 

Also 

<% 2re % ~> = 2re va~. 2re %,%> 

CO 

= 2ve.~a~,  2re <% %> 

+ 2~0 [ ~<%%> 
k+p 

[VS.VZ~ 2 + ~3. 

where we have used (2.38). It will be noticed that the last term in (3.22) precisely 

cancels the term k = p in the second sum of (3.21) so that a p disappears from these 

contributions. 

Similarly 

3.23 <~p,2pVp.VBv> = 2pVp.Vb p + 2pVp'<~p,VE > 
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= 2pVp-Vb p + 2pVp.<~p,%> 

+ 2pVp. [ bk<~p,V~k > 

k+p 

[pVo VZb~ 2 + _ _ %]_ , 

where we have used (2.38) once again. As before the last term cancels the term ~ = p 

in the first sum of (3.21). Thus no term in b p arises from these contributions. 

There remains from (3,5a) the following: 

3.24 <%,v20%>. rpv2~ ÷ (v~)2]<%.~>. <%,V2A~_I > 

p + = V2Oa p + [OV2p + (Vp 2 ) ]  b v 

• [pV2p. (vp) 2] <%,H~> + <%,v2~_~> . 

Collecting (3.21)-(3.24) together we have 

3.25a 

= a function of previously determined quantities. 

Similarly from (3.5b) we may deduce that 

3.25b 

= a function of previously determined quantities. 

(3,25a) and (3,25b) are the higher-order transport equations which as usual are 

inhomogeneous versions of the zero-order equations (3.12a) and (3.12b). The coeffi- 

cients a~ for m ~ p are determined by the algebraic equations (3.20a) and (3.20b) 

This completes our theory of the field near a smooth caustic. 
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3.2 A point source in an almost stratified me di~ 

Whenever neighboring rays come together the theory of section 2 breaks down 

since (2.41) predicts infinite amplitudes. This situation arises in our applications 

not only at smooth caustics but in the neighborhood of a point source. 

By analogy with the exact solution for a perfectly stratified meditun it might 

be thought that an asymptotic solution of the form 

3.26 ¢(x,y,Z~C) = ~ { V Av(x,y,z ) HIR)[e-i e(x,y)] 
9=0 

. ( 2 ) '~  -1 
+ aV Bv(x 'Y 'Z)  nO L~ e(x,y)]} , 

. (2) is the zeroth order Hankel function of the second kind, would be uniform where H 0 

near 8 = 0 . Indeed, when the dependence upon z is absent this ansatz is valid for 

the scalar Helmholtz equation near a point source [l~], and if the coefficients of 

the original equation are regular near e = 0 an argument of Hadamard [15] in his con- 

struction of the elementary solution shows that A~ , B~ are also regular. 

A slightly neater alternative to (3.26) due to Babich [13] is also uniform near 

the source for the scalar (z-lndependent) equation. This is 

3.27 ,~(=,y,z;s) = ~ A~Cx,y,z) %(s ,e )  , 

where 

3.28 fv(¢,e ) = s~ e~ ~ 2 )  (e/s) . 

However, neither (3.26) nor (3.27) are valid for our problem unless, at e = 0 , 

<~m ' ~n > = 0 . This cam arise, for instance, when the ocean has axial symmetry 

about the vertical through the source point -- an unpleasantly restrictive hypothesis. 

Let us illustrate the difficulty which arises on using (3.27) and (3.28). We 

first note the recurrence formulae for the f : 
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3.29a 

3.29b 

12 f~ 2(v m) %-1 82 . . . .  f~-2 

3% 
38 = ef~-i ' 

On substituting (3.27) into (2.6) and using (3.29a) and (3.29b) we obtain 

3.30 {02[(VO~2A v - L%] 
~=0 

+ [v(e2)-VAV_l + 1/2 v2(e2)Av_ l + 2(v-2)z~,~_l] 

+ v 2 % - 2  } % - 2  -'- o . 

On equating the coefficient of f-2 to zero we get 

3.31 (ve)2A ° - LA o = 0 . 

In order to treat the boundary conditions we note that fv+i/f9 = 0(e) as e ÷ 0 @ 

S u b s t i t u t i n g  (3 .2 7 )  i n t o  (3 .28 )  and  t a k i n g  o n l y  t h e  t e r m s  i n  f we o b t a i n  
o 

3.32 
~A 

o 
0¢Ao + 8 ~-'~'= 0 , 

so that (VS) 2 = k 2p as usual with Ao = ao~p " 

To obtain the transport equation we need to equate the coefficient of f-i 

to zero and then take inner products with ~p . This leads- to 

in (3.30) 

3.33 e2[k;<@p,Am> - <~p,LAl>] + v(e2)'Vao + v(e2)ao<@p,VSp > 

+ i/2 ~2(02)% - 2<~p,L~p> % : 0 

The first term of (3.33) yields a boundary term on integration by parts and so does 

<% , VSp> by (2.38). But these cancel because of the equation obtained by taking 
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terms of order f-i in (2.16). Thus 

SAI 
3.32 (~ A 1 + 8 B--~-) fl Svz'eVeAo ee f-z 

But e 2 f-i = _ l__ e 2 fl by (3.29a), so that 

= 0 . 

3.35 ~ A 1 + S ~ = - Vz'veA o on z = Z- . 

All that remains of (3.33) is the zero order transport equation 

3.38 kpa~ ~o/e is constant along a ray tube. 

But here ~0/8 and hence a ° , is finite and non-zero as 8 ÷ 0 at the source. So 

far SO good! The difficulty arises when we now take the inner product of the coeffi- 

cient of f-i with ~m ' m + p , to get <% ' AI> " This leads after some reduction to 

3.39 

But as 8 ÷ 0 

3. ]40 

so that 

3.41 

~/2 v(e 2) = o(e) 

<% , i, o(e -~) 

This may be put in the form 

e2 V.(a~ Ve 
3.37 ~-- ~-) = 0 . 

o 

The conservation equation analogous to (2.41) is thus 

3.36 V(e2).Va ° + 1/2 v2(e2)ao - 2(V0) 2 a ° = 0 . 
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unless 

3.1,2 <~m ' V~p>- <V@m, %>= 0 . 

This points up the difficulty and shows that the form (3.27) is not uniform near the 

source since when 8 is sufficiently small the term in fl will dominate the one in fo 

Nevertheless, we shall assume the term in f gives a good zero order approxima- 
o 

tion even though we do not know the correct form for later terms in a uniformly 

asymptotic series. 

In order to find a from (3.36) we need some initial conditions. We shall 
o 

assume that at the source each mode is excited to the same extent that it would be 

if the medium were perfectly horizontally stratified with properties everywhere the 

same as at x = 0 , y = 0 , the source horizontal coordinates. Thus for a point 

source at z = Z in such a medium we have 
s 

3.43 ¢(r,z) = i~ ~ H(2)(~Pr~ o \ / *p (zs)*p (z) 

Each term in (3.43) which corresponds to a propagating mode will give rise to a ray 

solution whose leading coefficient will satisfy 

3.44 a o = -iT Cp(O,O,Z s) 

at the source point. The equation (VS) 2 = 12 with 8 = 0 at x = 0, y = 0 will deter- 
P 

mine e and the rays after which (3.36) with initial conditions (3.44) will give us 

for each p . If we denote the a o belonging to Ip by soP then the solution in a % 

region containing the source will be taken as 

3.45 ~ = ~ aoP(X,y)~p(X,y,Z)Ho(2) (e/E.) 
p=O 

in accordance with (3.27) and the discussion above. 
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h. Space-tlme rays for more ~eneral time dependence 

So far we have considered only time harmonic disturbances which are proportion- 

i~ T 
al to e After cancellation of the exponential factor such signals are governed 

by the reduced wave equation (2.1) where 

h.1 ke(~X,aY ,Z) = 
2 

c2(cX,eY,Z) 

In this section we shall generalize the ansatz of the earlier sections for more gen- 

era& time dependence and at the same time we may allow the sound speed c(gX,eY,Z,aT) 

+ 
and the boundaries Z = Z-(~X,aY,gT) to depend weakly upon the time T. 

h.l The ray theory 

We start with the full time-dependent wave equation 

~ 2 ~  _ a 2 ~  _ ~ 2 ~  _ ~,,2,~ = o , 
c 2 BT 2 BX 2 ~y2 BZ 2 

with boundary conditions in the simple form 

&3 
+ 

= 0 at Z = 0 , zJ. = 0 at Z : Z (eX,gY,aT) . 
~T Sn 

We choose this form of boundary condition partly for convenience. It would in prin- 

ciple be possible to allow the upper boundary to be the free surface of the ocean 

disturbed by surface waves. However, in order to set up the correct equations in 

that case we should need to llnearlze the equations about a dynamic state instead of 

linearizing about equilibrium but this would lead us too far from our theme. Trans- 

forming to the contracted variables 

4.4 X = gX, y = CY, z = Z, t = aT 

(4.2) becomes 

~.5 -2c (ic) 2 z~ = o . 
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We now use the new ansatz replacing (2.10), namely 

4.6 ¢(x,y,z,t) = e S(x'y't)/(i~) ~ Ag(x,y,z,t)(iC)9 

where S is not necessarily linear in t and A~ may depend upon t as well as x,y,z . 

On substituting (4.6) into (4.5) and cancelling the exponential we get 

2.7 --~(StA 9 + SttAv_l + 2StAg_l, t + A~_2,tt) 
9=0 C 

- [(vs)2% + 2VS.VA _ 1 + v2%_i + v2%_ 2] 

Equating coefficients of (ia) 9-2 to zero starting with 9 = 0 we obtain 

2 _ 2Ao Ao Z + 4.8 12 S A ° (VS) + B2Az o = 0; = 0, z = 0; ~z oA = 0, z = 
o 

Let us write 

4.9 o~ = -S t , k_= VS • 

Then (4.8) shows that 

4. I0 A O = ao~p(~,x,y,t) , 

where 

4.11a 

4. lib 

4.iic 

2 

c 

~2p = 0, z = 0; 8z~ p = 0, Z = Z + ; 

Z + 

<~P'$q> - I ~p~qdz = 6pq 
0 
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For a given ~ this is an eigenvalue problem llke (2.22), (2.23) but here m is not 

given in advance and we must regard (&.lO), (4.11) as defining a relation between m 

and k 

4.12 k 2 = k~(0~,x,y,t) , say, 

where as in (2.24) the k2 form a decreasing sequence tending to - ~ Actually we 
P 

see from (4.9) that (4.12) is a partial differential equation for S analogous to the 

eikonal (2.26), and llke that equation it may be solved by the method of character- 

istics. The characteristics are defined by the ordinary differential equations ([16]) 

4.13 
dk 

dx = dy = dt dS x 

dk 
-d0~ 

and are called hqrizont.al space-time rays. This system may be solved simultaneously 

for x, y, t, kx, ky ~ and S provided that starting values are given satisfying (4.12) 

at some point on the ray. Notice that if c and the boundary conditions are indepen- 

dent of t then so is ~ and by (4.13) ~ is constant along each ray. 
P 

On differentiating (4.12) with respect to ~ we obtain 

4.14 k = k ~ k V.m . 
-- p0Jp~ 

Thus the first three members of (4.13) give 

d_~ k_ 
4.1  = 

But this tells us that the horizontal space-tSme ra~s are traced bypoints travelin~ 

with the group velocity. We now equate the coefficient of (i~) -1 in (4°7) to zero. 
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This gives 

4.16 i 1  2 2 2 ( ~ -  StAo, t StA 1 - (VS)2~ + BzA1 ] + - VS.VAo) 
c c 

+ ( ~ S t t  - V2S)A ° = 0 
c 

with boundary condition (compare (2,34)) 

4.z7 A z = 0 at z = 0, BzA l = -VZ+.VS A ° 

Taking an inner product of (4.16) with Sp we obtain 

4.1o <~ - f ) * l  " ~-~" 
C 

- < % , c ~  ~t + ~'~-)ao%> - o .  
C 

In order to reduce (4.18) we use an equation obtained by differentiating (4.iic) with 

q=p : 

and one obtained by differentiating (4.11a) with respect to ~: 

4.20 ~ 2V ~2 + 
z & p  - ~2)~k~ p + 2 ( ~  ~k~ - k_)¢p = o , 

which leads on taking an inner product with ~p to 

e 

or 

4.22 ~l&~l <~p, ~ ~p>--tk_l.  
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Thus (4.18) becomes 

z÷ ~I k'VZ+ao 2~<~ ,Z__ 
4.23 [~p~zA1- ~z~pA1]0 + IZ +- - P C2 ~p,t>ao 

- 2[w<~_i~,4c ~ ~p>ao, t + --k°Vao] - [<~p'~-2 ~p>~t + V'k]ao-- = 0 . 

But the first two terms of (4.23) cancel by virtue of (4.11) and (4.17). Thus 

finally we obtain using (h.21), (4.22) 

4.24 2~<¢_ l_= + Vk~. Va o) P c ~ ~p>(ao,t 

PC P c ~ 

This is an ordinary differential equation for a along a ray since by (4.15) it may 
o 

be written 

da 4.25 2~<~ l_= __Eo 
p c ~ %> dt 

+ (<~p,l_~ ~p>~t + 2~<~p,4c z ~p,t> + V'k)ao = 0 

We note that if c is independent of t, as is commonly the case, (4.23) on multiplica- 

tion by a ° gives 

4.26 ~t(~<~ '~ a 2 v. (ao2~) 0 
P c z %> o ) + = . 

This is a space-time divergence equation and by (h.15), (4.21) the space-time vector 

4.27 (ao2k, 0J<~ 1. 2 
-- p c 2 %> a o) 

is parallel to the rays. Thus on integrating (4.26) along a narrow tube of rays 

bounded by surfaces S1, S 2 on which t = constant we have 
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2"~$2 = 
4.28 aOJSl 0 . 

where ~Z is the area cut out by the tube of rays on surfaces t = constant. Thus 

4.29 ~Z .<~ i__ a 2 
p c 2 ~p> o 

By (4.22) this reduces to 

4.30 
v 
g 

where 

is constant along rays. 

- -  = constant along rays, 

4.31 v = 
g  Ikl 

iS the group velocity. 

Just as for the spatial rays of section 2 further consideration is required 

when ~E , the area cut out by the tube of rays on surfaces t = constant, goes to 

zero. This can lead to an 'All V phase' when the travel-time along rays to a parti- 

cular location x,y has a (local) maximum or minimum. This is analogous to a smooth 

caustic. The point source needs special attention and so does the high frequency 

contribution since when ~ is very large all rays travel with almost the same speed 

c, the characteristic sound speed of the medium on the axis of the sound channel. 

4.2 The excitation due to a point source 

Just as in section 3.2 we shall assume that near the source the leading term in 

(4.6) is excited by a point source to the same extent that it would be excited if the 

medium had no horizontal or temporal variation. The method we use here is different 

from that of section 3.2 and is an example of the use of canonical problems. This 

method gives the leading term correctly but would fall for higher terms even if the 

difficulty mentioned after (3.~2) were absent. 
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We shall solve an inner problem in order to find the behavior of a near a 
o 

point source so as to have starting values for (4.25) or to determine the constant 

in (4.3o). 

We consider 

2.32 
e2(0,O,Z,0) 

¢ = O, Z = O; SZ ¢ = O, Z = Z+(O,O,O) . 

The right member of (4.32) represents the source localized at (0,0,Z o) and with time 

variation llke f(T). We shall assume that f(T) is zero outside some interval 

Z + (0,T l) . Notice that c, have been specialized by setting E = 0 in c(EX,EY,Z,cT) , 

Z+(~X,EY,eT) . 

Let us transform (h.32) by setting 

~.33 ¢p(m,x,Y) : a~ dZ¢(X,Y,Z,~)¢p(~,Z)e -i~ , 

where as usual 

2 
h. 34 3Z~ p + 

C 

~p = 0, Z = O; BZ~p : o ,  z : z + ( o , o , o )  . 

Transforming equation (4.32) we obtain 

4.35 <%, 
_Go C 

^ 2^ ~Z2)$p>e-iaffdT - 325- 3~ 

which leads by way of (b.3h) to 

^ 

: z ( m } a ( x ) a ( ~ ) ¢ p ( z  s )  

^ 2 ̂  2 ̂  = ^ 4 . %  ~2x¢ p + ~y¢~ + ~pCp - f (m)a(x )6 (Y)¢p(z  s) . 
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Here f(~) is the Fourier transform of f(T) . 

As in section 3.2 

h.37 ~p = _ iwf(~)~p(ZS)H~2)(IpR) 

which satisfies the outgoing radiation condition at R = ~ , where 

1 

~.38 R = (X 2 + y2)2" . 

Thus a good approximation to ¢ is 

4.39 

where 

4. hO 

$(X,Y,Z,T) = ~ $p(X,Y,Z,T) , 
P 

C f(~)~ (~,Zs)H(2)[X (~)R]@ (~,Z)e-ia/2dm • @p(X,Y,Z,T) = - ~ J_~ P o p p 

The outer expansion of this inner solution is obtained by setting 

1 

4.~i R = r/e , r = (x 2 + y2)2 , T = t/e 

and evaluating asymptotically for small ~ . Thus 

?(~), (~,zo), (~,z)H (21"~-' i~t/~ 4 . 4 2  *p(X,y,z,t) = ~ j_~ p o p o - ~ g ) e  d ~  

Using the leading term of the asymptotic series for H (2) with large argument ~17]I 
o 

we obtain 

4.43 Cp(X,y,z,t) ~ 

1 

- ~ ~,Z s ~,z 

1¼ [½(~)r-~],(i~) 
e e d0~ . 
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But this integral is suitable for an application of the stationary phase approxima- 

tion. Let ~o = m(r,t) be a value of ~ for which 
o- - 

4.44 ~ [~p(~)r - ~t]I~ = 0 . 

o 

Then, making the usual approximations near 
O 

we set 

when only the leading term is required, 

4.45 1 3~kp(eo)r(~_~o)2 kp(~)r-~t ~ Rp(~o)r-~ot + 

in the exponential but ~ = m in the other factors. This approximation yields 
O 

b. b6 i 
Cp(X,y,z,t) ~ - 

i w i 
× e ~ ~ j  e [ (~°)r-~°t]/(ig) 

× f® e½~(%)(°"-%)2/(iC)d~ 

i(l-+l) 1 e 
e [Xp(%lla~Xp(%)l ]1/2 r 

× f(~0o) ~p (~o ,Zs )~p ((0o, z ) e [lp (L00)r-~0Ot ]/(i~) 

9__ 
where the upper or lower sign is to be used according as ~Ap(~0 O) is positive or 

negative. 

Equation (h.h6) is now suitable for comparison with (4.6) when x,y,t are small. 

However, we must mare one minor modification to (h.6): it should first be multiplied 

by ~ . This change makes no difference to the analysis in the previous section and 

we see that, as r ÷ 0 , t ÷ 0 in such a way that r/t is constant, we get 



118 

i (Z-+l) 
^ 

4.47 lira rA = e . r~ o r~p(%)la~p(%)l-]l/2 f(~)*p(~o'Zs)~Jp(~o'Z) ' 

4.48 S(x,y,t) ~ Ip(~o)r-~ot , 

where m is given in terms of r,t by (5.55). It is easily seen that in (4.30) 6~ is 
O 

0(r 2) as r ÷ 0 when all rays issue from one point. Hence by (4.47) the constant in 

(4.30) is well determined as r + 0 . 

The procedure by which the leading term is determined is as follows. Given the 

point x,y,t and mode number p, find the space-time horizontal rays for mode p which 

Join (0,0,0) to (x,y,t) . For each such ray the value ~ of m and the ratio r/t is 
O 

well determined as r + 0 and moreover these values are consistent with (4.~h) since 

the rays are traced by points moving with the group velocity at each point. Start- 

ing values of a may now be obtained from (5.47) for use in (h.25) or (~.30) from 
O 

which a may be calculated at each point on the ray and in particular at (x,y,t) . 
O 

We note that when ~ is large Ip(~) frequently has the asymptotic behavior 

~. h9 lp(~O) = now + n I + n2~O-! + 0((o -I) . 

Thus as t/r ÷ no, 0~ o of (4.44) tends to infinity and IS~p(~o) I ÷ 0 so that the ap- 

proximation (h.46) is useless. We shall consider this situation in section 5.h. 

4.3 The Air~/ phase 

It frequently happens that in stratified media the group velocity has a minimum 

for some value of the frequency ([!]). Let ~o be this frequency and to(x,y) the arriv- 

al time at (x,y) corresponding to a disturbance from a point source at the origin 

traveling with this minimum group velocity. Then for t < t o and It-to] small, there 

are two space-time rays which arrive at (x,y,t) with slightly differing values of ~. 

When t = t Just one ray arrives and when t > t no rays reach (x,y,t) . This phe- 
O O 

nomenon may be generalized for almost stratified media and is the space-time aaalog 

of a smooth caustic. For any given location x, y there may be a to(X,y) such that 
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two rays Join (0,0,0) to (x,y,t) if t < to(X,y) and none if t > to(X,y) . For t 

near to(X,y) we need a more sophisticated ansatz than (4.6). The correct form is a 

generalization of (3.1). 

4.50 

2 

¢(x,y,z,t) = e S(x'y't)/i6 ~ (ic)~){A (x,y,t)V[6-~p(x,y,t)] 
9=0 

1 2 

+ 163B~(x,y,t)V '[e 3p(x,y,t)]} . 

The calculation proceeds as before. Substituting into (4.5) and equating coefficients 

of (ic)~V , (i6)~i61/3V ' separately to zero, we get first the eigenvalue problem 

4.51 B~A + [ ~  ()_St+ppt_2 2 - (VS)2 - p(Vp)2]A ° = 0 
c 

where instead of (3.8) we have imposed 

4.52 i - vp.vs = 0 -~ PtSt 
C 

A satisfies the usual boundary conditions 
O 

~A 
o + 

4.53 A o = 0 at z = 0, ~ = 0 at z = Z (x,y,t) , 

similar equations hold for B 
O 

Thus as before we write 

= P B ° P 4.54 A ° ao~ p , = bo~ p . 

The transport equations obtained from the 9 = i coefficients are 

4.55a 2[<¢_,&x~ >s.a . -Vs.Va o] + [< ~- - v2s] a 
p c a p z o,z ~p' 2 Sp>Stt o 

+ p[<O_,~ ~p>Ott-(Vp)2]bo + [<~p~lc- ~ ~p>Ot 2 - (VO)2] b 
P e o 
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+ 2 P [ < $ _ , 4  ~p>Ptbo, t - (VP) 2 ]  b o = 0 , 
P C ~ 

h . 5 5 b  2 [ < ~ _ , 4  *p'Stbo, t- VS'Vb O] + [ < * p , ~ -  •p>Stt - V2S] b 
p C ~ 0 

+ [<~"-"~"  *p>Ptt - (VO)2]ao 
c 

+ 2[<%,~-'{ %>Otao, t - Vp.Va o] = o . 

Just as at (3.13-3.17) it is found that on defining 

4.56 

_3 
2 O2 S-+=S-+~ 

1 1 

-=p _+p , 
ao o o 

+ + 

that a- satisfy the ordinary transport equation (h.24) and S- the ordinary eikonal 
O 

equation (4.12), (4.9). 

As we mentioned earlier this ansatz is suitable for the case where two rays 

+ 

reach some points (x,y,t) . For such points S- eme the values of S which would be 

computed from (h.13) for the two rays, and p(x,y,t) = 0 defines the surface 

t = to(x,y) separating the region reached by two rays from the region reached by no 

rays. 

The following method suggests itself for implementing the ansatz (4.50). 

Let us assume that we have at our disposal a computer ray tracing code and a method 

of solving the ordinary transport equations. Then let S- be the phase at (x,y,t) 

corresponding to the ray which has not yet touched the caustic, let S + be the phase 

at (x,y,t) on the ray which has touched the caustic. Then define 

1 
h.57 s -- ~ (s + + s-) 

2 

= [¼(s + -s-)] 3. 

Let a- be the amplitude on the ray which has not touched the caustic calculated in 
o 

the usual way and  l e t  a + be  t h e  a m p l i t u d e  on t h e  o t h e r  r a y  c o n t i n u e d  b e y o n d  t h e  
0 
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caustic by means of (h.30) where ~Z is always taken to be positive. Then define 

1 

1 pT(ao+ - ~.58 % = ~ + %) 

1 

b ° = _ . 

If the calculation is accurate it will be found that a , b are finite as p ÷ 0 
o o 

although a -+ both become infinite, and P itself is a smooth function tending to zero 
o 

as the field point approaches the caustic. With these values of S, p , a ° , b ° we 

may uSe the first term ~ = 0 in (~.50) to obtain an approximation valid right up to 

the caustic. 

This calculation depends upon the existence of two rays reaching the point 

(x,y,t) and so it fails on the dark side of the caustic where no rays penetrate. 

However, the required values of S, p in the neighborhood of the caustic but on the 

dark side may be obtained by extrapolation from the bright side. Indeed, we never 

need extrapolate far since the exponentially decreasing behavior of V(~) for negative 

argument assures us that only small negative values of p are significant. 

It is of interest to see how the ansatz (h.~9) reduces to the original form 

(h.6) when p is not small. In this case we may approximate V(c-2/3p),V'(~-2/Bp) using 

the large negative argument approximations to the Airy function ([18]) : 

1 3 1 

i ~-~ sin(~ ~ 4.~9 v(~) = Ai(-~) -- ~ + ~ )  * 0(~ -~) , 

I 3 5 

v, (~) = - A~' (-~) = ~ 

Thus by (~. 49 ) 
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t~.60 
! 1 DBI2+ 

_Slier 1 aoSin(~ E 

1 ! _312 

+ ~ P DoCOSt ~" + pp 

1 ! ! 
312 Tfi 312 'ITi ~/~ ~ e ~ii~<> ei~ i ~ j ~  + ~+o e-f° i~ e ~ ~,p 

1 # ( ~  e~-ii~ a + e s l ~ e  ~,p 

i 

This agrees with (b.6) i f  we divide (4.59) by ~6 , mult ip ly by 2vr~ e ( I /~)~ i  and 

i d e n t i ~  a ° o f  (&60) with a ° o f  (~.6), (&10). 

We see from (4.60) that there is a phase shift of ~ in the signal corresponding 

to the ray which has touched the caustic relative to the signal for the direct ray 

even after allowance has been made for the differences in path length. Provided this 

phase shift is incorporated it is possible to use the naive ray theory of (4.6) even 

for rays which have grazed the caustic, provided the field point is not close to the 

caustic. The ansatz (~.50), from which (4.59) was derived, provides a connection 

formula for rears which graze the caustic. 

Equation (h.39) also shows that the field away from the caustic is smaller by 

order of magnitude ~1/6 than the field near the caustic. Or, looking at the phenom- 

enon the other way, the field at the caustic is amplified by a factor of order 

E -(1/6) relative to the general field away from the caustic. Indeed, it is this in- 

tensification which gives caustics their name. In the time dependent case the Airy 

phase mamifests itself as a large amplitude oscillation which terminates a dispersed 

train of oscillations consisting of two superposed frequencies. The low frequency 

component increases in frequency and the high frequency component decreases in fre- 

quency until they terminate with a common frequency in the Airy phase which with its 

large amplitude is often the most prominent feature on the record ([1]). 
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4.4 The precursor and other phenomena requiring special treatment 

As we mentioned at the end of section h.h special consideration needs to be 

given to the high frequency arrivals which propagate with speeds close to the char- 

acteristic speed on the axis of the wave guide. For some velocity profiles (fairly 

flat ones) this speed is approached from below as ~ * ~ while for others (with deep 

velocity minima on the axis) the velocity may approach c from above as ~ + ~ In 

either case the dispersion relation typically has the asymptotic form 

4.61 Ip(',') : nora + n I + n2m-i + O(,.C l) 

It will be seen that when t/r is near n o in (h.h4) the frequency m ° will be large 

and S~Ip in (4.46) will be small so that the approximation used there is not valid. 

Moreover all modes have the same group velocity in this high frequency limit so that 

rays corresponding to different modes tend to arrive simultaneously. But under these 

conditions the parabolic equation method as developed by Tappert [19] is probably the 

most useful method. This high frequency arrival is usually referred to as the water 

wave ( [ l ] ) .  

If, with the advent of arrays of receivers which can separate individual modes, 

a theory for the water wave carried by an individual mode is required, it may be pos- 

sible to adapt the method of Zauderer [20]. If the time function f(T) in (h.32) is 

replaced by ~(T) so that we are seeking a fundamental solution then the equation in 

the x, y, z, t variables is 

~.62 A_2 ~t 2¢ -  v2¢- i~ ~z2¢ 
c 

= ~ a c t )  6(x) a ( y )  aCz-z o) . 

Then Zauderer's prescription would suggest we set 

h.63 

where 

4 .64  

¢(x,y,z,t) = ~ Av(x,y,z,t) gv[c,S(x,y,t)] 
~=0 

%(~,s) -- ~(~s) v-l/2 %_z/2(s/~) , 
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which should be compared with (3.28). Then 

l__ = (2v_B)g~_ 1 h.65 ~2 gv - e2%-2 

% %  = e%_ l 

which are similar to (3.29a) and (3.29b). On substituting (4.63) into (4.62) we 

obtain the usual eikonai eigenvalue problem 

2 k2)A ° 4.66 ~A ° + (--~- -- = 0 , 
c 

where ~ = - S t , ~= VS so that A o = ao$ p . The transport equation for a o is 

[<~p,~ ~p>(S2)tao,t - V(S2)'Vao ]+  <~p,~" ~pt>(S2)tao 

+ ~ir<'Wp'21 ~p>(S2)tt_V2(S2)]ao + 3<@p,~[gp>ao = 0 

If c is independent of t this may be put into the form 

4.67 S t(<%,~-~ ~p>S-2Stao2) - V'(S-2qSa2o) = 0 , 

which gives a finite value of a at the source. 
o 

leads to (4.30) so (4.64) leads to 

Compare (3.37). Just as (4.26) 

4.68 ~ I k-t a 2 
S2v o 

g 

= constant along a ray, 

where k , 6Z ~ v have the same significance as in (4.30). Starting values for a 
-- g o 

near the origin may be obtained by solving an inner problem using the method of 

Handelsman and Blelsteln [21] to evaluate (h.43) as t/r approaches n of (4.6l). In 
o 

order to do this the constants in (4.61) must be known. We shall not pursue this 

topic further. 
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Another phenomenon requiring special treatment is cut-off. It frequently occurs 

that in a perfectly stratified medium waves fail to progagate for I~l and w below 

some finite nonzero values ([1S). This is connected with what are often called ground 

waves in ocean acoustics or head, or lateral, waves in other contexts. They corre- 

spond to disturbances traveling in the substratum below the ocean and subsequently 

being refracted back into the ocean at the critical angle. Values of Ikl and 

smaller than their values at cut-off will correspond to modes which leak energy into 

the substratum and so are evanescent in the horizontal direction. The horizontal 

ray theory has not been developed for modes traveling near cut-off and since all 

modes typically have the same group velocity at cut-off it is doubtful if a normal 

mode theory is adequate. Reference should be made to Cerveny and Ravindra [22S for 

an account of head waves in seismology. 

This ends our discussion of the theoretical aspects of horizontal rays. In the 

next two sections we illustrate the theory for time harmonic disturbances. In 

Section 5 two idealized examples are considered and then in Section 6 we treat wave 

propagation in a realistic ocean and compare the predictions of our theory with ob- 

servational data. 

5. Two theoretical examples 

5.1 Homo6eneous medium, one free horizontal boundary I one ri6id boundary with small 

constant slope 

As a first illustration of the asymptotic technique of Sections 2 and 3 let us 

consider a model ocean in which the sound speed is constant, the surface Z = 0 is 

free and the bottom is rigid with a small constant slope. Thus k 2 of (2.1) is a con- 

stant. The boundaries are 

5.1 z = z-(cx,~Y) = o 

Z = Z+(eX,cY) = ~Y , 

which lead to 
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5.2 z = Z-(x,y) = 0 , 

z = Z+(x,y) = y . 

The boundary conditions are 

5.3 $= 0 on Z= 0 , 

~-~= 0 on z =y . 
~n 

The operator L is given by 

5.4 L$ H ~ + k25 k 2 constant 
~z 2 ' • 

The eigenv~lues and eigenfunctions of L are 

5.5 12 = k2 _ (~,L/2)2~ 2 
p 2 

Y 

end 

Since 
P 

give 

is independent of x, the first ray equation (2.27a) may be integrated to 

5.7 Ap cos ~ = Ao p ' 

where cos ~ = dx/ds so that ~ is the angle between the ray and the x axis. 

stant I ° is given by 
P 

The con- 

5.8 I ° = ~p(0,Ys)COS p ~S 

where ~S is the angle ~ at the source x = 0 , y = YS " On using the relation 

ten ~ -- dy/dx we obtain also 
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5.9 x = 

Y ~o 

S (X 2 A°2) 1/2 
dy' 

- p - p  - 

,o [1 = +  p 2) 

_ (k2-x; 21 y,2(k2_~ _ 
(p_i/2)2w211/2 I y'=y 

Y' ---Ys 

The phase 8 with initial condition 8 = 0 is given by 

5.1o 

~2 

~Ys P dy' e = 2 02 1/2 

~2 ~o2 1/2 tan_l~ ~2 ~o2)i/2 Y'--Y (p-p) y, 
(p-il2)~ - I (p-s.f2)~ | |  

-_1 y '=y  S 

A quantity which we call the ray-bundle aperture will be used in the numerical scheme 

which finds the amplitudes a o The ray-bundle aperture is O where o 6~S/~ p is the 

cross-sectlon of the tube of rays which leaves the source in directions between ~S 

and ~S + 6~S " It is given by 

~--~-x I sin 
5.11 lol -- ~p ~s y 

=J~_ ~o~ ./~ ~o~ ~ '~'~ ~o~, ~o~ 1 
~p p W p- p ~2~o2) ~2 ~o2 

where the subscripts S and R stand for the source (0,Ys) and receiver (x,y) respec- 

tively. 

Figures 1 through 3 show results for aparticular numerical example: 

5.12 k =2~, 

YS = 500 , 

e -- .01 . 
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0 
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x; 

Figure i. I~ versus distance Y from the shore for a Eigenvalues 
homogeneous medium bounded above by a horizontal free 
surface and below by a rigid surface of constant slope 
based on (5.5). 



129 

Y 600 

MODE 1 

600 

Y 

0 SOD 1200 1600 2OOO 
X 

MODE 2 

0 400 ~ l 1200 1 ~  2000 

600 
Y 

400 

20D 

0 ~00 

MODE 6 

MODE 3 

¥ 600 

4OO 4OO 

2OO 2 ~  

0 400 600 1200 1600 2000 0 
X 

MODE ~ MODE 9 ++v 
V V 6C0 

400 i 400 

2O0 2 ~  

0 400 800 1200 1600 2000 0 400 
X 

MODE 5 MODE l0 

$00 I200 I~00 2000 
X 

I000 

lO0 

2O0 

0 /400 800 12CQ 
X 

MODE 7 

Y 6 ~  
4 ~  

400 S ~  X I200 MOO 2000 

MODE 8 

BOO 1200 k~IQ 200D 

600 1200 1600 2000 
X 

Figure 2. Horizontal ray diagrams for modes 1 through lO 
based on (5.9). 



130 

It follows from (5.5) that there are only ten propagating modes in the vicinity of 

the source. Their eigenvalues ~2 (p=l,...,10) are plotted as functions of Y in 
P 

figure 1. The resulting ray diagrams are plotted in figure 2. Notice that 

each mode is turned away from the shore Y = 0 (where Z + = Z- = 0) , and each mode 

envelops a caustic curve. The caustics corresponding to these ten modes are plotted 

in figure 3 and labeled with the corresponding mode numbers. 

Points on the concave side of curve p but on the convex side of curve p + 1 will 

receive two rays for each of modes 1,2,...,p and no rays for modes p+l,...,10. 

Points very near curve p will receive a large amplitude for mode p . However, accord- 

ing to (3.43) the amplitude of mode p excited by a point source at depth Z S will be 

proportional to ~p(0,Ys;Z S) . Thus the depth of the source as well as the position 

of the receiver will affect the amplitude of each mode. 

5.2 Pr°Ps~atign in deep water for which the sound speed increases wlth depth 

There are bodies of deep water such as the Mediterranean Sea in February in 

which the velocity of sound incresses monotonically with depth e~nd varies slowly with 

horizontal position. As a model for such a medium we take k 2 in the form 

5.1B 
2 2 

k2(x,y,z) = ko(x,y) - kl(X,y)z • 

In any real body of water the z coordinate will not have the full range 

o212 + ÷ (0,k /k ) but will be restricted to lle between 0 and Z (x,y) , say, where z = Z (x,y) 

2 2 
is the equation of the bottom and Z + << k~/k I . We shall consider only the propaga- 

tion of modes trapped so near the surface that they are not affected by the bottom. 

The bottom is usually an absorptive boundary so that we may rationalize further by 

supposing that if a mode does feel the effect of the bottom it will be so highly 

attenuated that it will not propagate to any great horizontal distance, Thus we shall 

seek eigenfunctions ~p(X,y,z) which ultimately decay as z increases. The eigenvalue 

problem is now 

5.14 a2~ + (k2-X 2) ¢ =  0 , 
~z 2 
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with 

5.15 @ = 0 at z = 0 

and 

5.16 

5.17 

remains bounded. 

If in (5.14) we se t  

= -(k2-k2)/klh/3 

we obtain 

5.18 
a=2~ = ; ~ .  

Thus if we invoke (5.16) we find that 

5.19 ~ = c Ai(~) , 

where Ai is the Airy function. 

Equation (5.15) implies that 

5.20 Ai[-(k~-12)/k! h/3] = 0 . 

Thus I may take on any of the values 
P 

5.21 

132 

for which 

5- 22 [•p ]-1/2 
cp = kll/3 Ai 2 (~)d~ 

We note that 0 > ~i > ~2 > .... 

The normalizing constant c of (5.19) may be easily verified to be 

2 2 ~-/3 
- (ko-~p)/k I = ~p , the p-th zero of Ai , 



133 

On combining (5.19) with (5.22) we obtain 

5.23 [•p ] -i/2 k12/3 ~p = kll/3 Ai 2 (~)d~ Ai(~p + Z) . 

It is interesting that the constant k2o has dropped out of the expression for ~p . 
Rewriting (5.21) we get 

5.24 k2p = k2o + kl 4/3 ~p " 

Thus if k 2 and kl/3h depend linearly upon y but not at all on x then so does k 2. o p 

this case the eikonal equation and the ray equation can be integrated exactly. 

For example if 

In 

5.25 k2 = 2 + v2 p ~p p Y 

then 

5.26 x=xs±2~ (yi/2_ysl/2) 
P 

where Xs, YS are the coordinates of the source~ 

5.27 p p Ys ) 

and the ray bundle aperture is 

5.28 ~ = ; 
I 2 2 2 2 1 yl/2 -~p+~p y -~p+~ Ys 

Ys I/2 yi/2 - ysl/2 

The ray diagrams have the same character as those of the preceding example (figure 2.) 
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6. Long range acoustic propagation in a deep ocean 

In this section we show how the asymptotic theory of sections 2 and 3 may be 

applied to a realistic ocean model. This is made possible by the existence of 

measurements made during the last decade which give good quantitative information 

about the variation of sound speed in the ocean, and by the availability of computers 

which make the computations feasible. We begin by considering from a more practical 

point of view the parameters which affect acoustic propagation in the (real) ocean. 

Then we give a brief description of the computer program which implements our scheme. 

Finally some results for a particular set of sound speed data are presented and these 

are shown to compare well with observed acoustic amplitudes. 

6.1 Environmentgl parameters 

The most important parameter affecting sound propagation in the ocean is the 

sound speed as a function of position. Empirical formulas such as Leroy's [23] 

(quoted below) indicate that sound speed increases with temperature, salinity, and 

depth. Leroy's formula is as follows: 

6.1 c=c +c o a + Cb + Cc + cd 

where 

(6.2a) 

(6.~o) 

(6.20) 

(6,2a) 

(6.2e) 

c : 1493 + 3(T-10)  - 6x l 0  -3  (T-10)  2 
o 

- 4x. lO-2(T-18) 2 + 1.2 (S-35) 

- I0-2(T-18) (S-35) + 10"3~/61 

Ca = i0-i ~2 + 2×10-h~2(T_18)2 + i0-i~ $/90 , 

c b = 2.6xlO -~ • (~-5) (T-25) , 

c : -  zo - 3  ~2 ( ~ - 4 )  ( ~ - 8 )  , 
c 

c d : l .  Sx10 -3  ( S - 3 5 ) 2 ( I - ~ )  

+ 3×10 -6  T2(T-30)  (S-35)  , 
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and 

c is the sound speed in m/s 

is the depth in Km , 

S is the salinity in parts per thousand (by weight) , 

T is the temperature in degrees centigrade , 

$ is the latitude in degrees. 

The last term in (6.2a) is a corrective term for low salinities, and should not be 

used if S is greater than 30. Since the dependence upon salinity is slight and the 

water at great depths is almost isothermal, there is a point below which the sound 

speed increases almost linearly with depth (See figure 4 ). The layer immediately 

above this deep isothermal region is called the main thermocline but occasionally the 

main. thermocline is absent, as in one of the idealized models of section 5. 

If the water near the surface is well mixed a surface duct may be formed (see 

figure 4 ) but acoustic energy traveling in such a duct tends to be scattered by sur- 

face roughness and may not be significant at long ranges. 

Figure 5 shows the sound speed along a track in the Pacific Ocean running north- 

ward from Hawaii to Alaska during the late summer of 1968. The change in depth of 

the SOFAR axis, that is, the depth of minimum sound speed at 42 ° N, is where the 

Kuroshio and the Oyashio currents meet. Even there the horizontal gradient of sound 

speed is so small that the asymptotic technique will be applicable. 

Up to now we have neglected absorption of energy but to make predictions we must 

consider the possibility of absorption both in the water itself and at the ocean 

boundaries. There is currently some disagreement about which empirical absorption 

formulas are the most accurate. Moreover, much of the relevant data is classified. 

However, measurements taken by Adlington [24] indicate that the ocean surface acts 

as a perfect reflector at frequencies below 1 kHz and for wind speeds below 20 knots. 

Absorption at the ocean bottom, on the other hand, may be quite large. Figure 6 

shows the bottom loss (ratio of incident to reflected intensity in decibels) mea- 

sured by Marsh [25,26] as a function of grazing angle. This refers to rays in a 
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vertical plane but a normal mode with no turning point can be associated in a natural 

way with such rays and will have a definite grazing angle associated with it. We see 

that larger grazing angles are associated with larger losses. 

In the water itself the predominant absorption mechanisms are viscosity and 

ionic relaxation of MgS04 . The most widely used formula for the attenuation coef- 

ficient is due to Thorp [27] 

6.3 ~= ---- 
! f2 40f2 

+ 
lO l+f2 4100+f2 " 

where f is frequency in kilohertz and ~ is the attenuation in decibels per kiloyard. 

Although (6.3) is a good fit to measured data ([28]) above a few hundred hertz, 

a second relaxation phenomenon introduces discrepancies at lower frequencies. The 

equation 

6.~ = 5.h2×10-2 f3/2 aB/kyd , 

developed by Sussman, MacDonald and Kanabis [29] supplements the above results and 

should be used below a transitional frequency of about 280 Hz . 

It follows from all these data that if we limit the frequency to around i00 Hz 

and wind speed to around 20 knots and consider horizontal ranges to beyond 105 yds. 

(50 to 60 miles) then we may assume that the ocean surface is free and we may neglect 

modes associated ,~-lth large grazing angles, 

6.2 The computer program 

The computer program which we have developed to implement our scheme consists 

of two parts. The first determines the normalized eigenfunctions and eigenvalues at 

each point of a rectangular grid in the horizontal plane. In the second part the 

horizontal ray-tracing equations are integrated, and the contributions of individual 

modes are combined to obtain the total field. The propagation loss along any desired 

linear trace in the horizontal plane may be displayed. Propagation loss is 

-20 lOgl01¢/¢ol where ¢ is the acoustic pressure at a receiver on the track and ¢o is 



140 

the acoustic pressure i yd. away from the source. According to the law of reciproc- 

ity, one may also think of the source as being situated on the horizontal track and 

the receiver as being the origin of the horizontal rays. 

The first part of the program requires as input the velocity-depth profile 

z~ j , c~ j , £ = 1,2 ..... nij , at each horizontal lattice point. The lattice points 

(xi,Yj) and for each lJ , c~ j is the sound speed at depth z~ j. are 

Temporarily dropping the superscripts iJ we define 

6.5 k~ = ~-- 
c~ 

where ~ is the frequency in radians per second The derivative g£ is defined by 

6.6 

2 
k2£+1 - kz 

g~ .... z£- z£+ I - 

and kg(z) is given by linear interpolation in the interval (z£, ZA+l) as 

6.7 k2(z) = k~ + gZ(z-z£) . 

It was found convenient to treat the refracted-surface-reflected (RSR) and the 

trapped (SOFAR) modes differently from the bottom-bounce (B) modes. Assuming that 

the eigenfunction corresponding to an RSR or SOFAR mode decays exponentially with 

depth in the deep isothermal layer Zn_ 1 < z < z n we must have 

6.8 C -I ~k(z) dn_iAi { -2/3rk2 - = -gn-i L n-i gn-i (Z-Zn-1) - ~2]} • 

where C is a normalization constant. If A < n - 1 

6.9 
-2/3 2 + c -I ~k(z) = d£Ai{-g£ [k£ g£(z-z£) - 12]} 

+ e £ B i { - g ; 2 / 3 [ k ~  + g~ (z -z£ )  - k2 ] }  , 
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and 

6.1o c- 1 ~k(z) 
~z 

dR g[i/3 Ai,r -2/3~. 2 - - =  1-g~ L~£ + g£(z-z~) - ~2]} 

-2/3r~2 + + e~ I/3 Bi' i-g Z [KZ g£(z-z£) - ~2]} . 

The constants d~ , e£ are determined successively by the continuity of ~ and 3~/Sz 

at z~ . The eigenvalues are found by shooting for ~k(0) = 0 . Once the k are deter- 

mined, Gaussian quadrature is used to compute the normalization constant C . 

For the bottom-bounce modes we proceed from z = 0 by first setting 

6.11 c -I ~ (o) -- o , 

6.12 c- 1 ~(z) 
8Z =i , 

successively evaluating the constants d E , e£ for ~ = 1,2,...,n-I and then adjusting 

so that 

6.13 C -I 8~k(Zn) 0 
~z 

However, it is more nearly correct to require 

~ (z n) 
6.1~ S-q----- / ~(zn) = a(~2) ' 

where a(k 2) is determined from the empirical bottom-loss expressions. 

sma l l  t h e  e igenvs i .ues  f o r  t h e  B modes a re  m o d i f i e d  accor6~ng ly  t o  X~2 

! 

The advantage of this procedure over that of computing X 
m 

Since a(l 2) is 

, where 

directly is that lengthy 
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complex arithmetic may thus be avoided. The imaginary part of ~m is the predominant 

attenuation factor at long ranges and should not be neglected. On the other hand the 

program does neglect the imaginary part of the eigenfunction. 

A significant reduction in computation could be achieved by using the Bohr- 

Sommerfeld and WBK approximations for the eigenvalues and eigenfunctlons. However in 

this prototype of the program we have not used these. 

After all horizontal lattice points have been treated,control is transferred to 

part two of the program where a family of horizontal rays is traced for each mode. 

The fact that we are now allowing the eigenvalues to have non-zero imaginary 

parts introduces an extra difficulty. Since only those modes which correspond to 

eigenvalues with very small imaginary parts will propagate to large distances, we 

assume that 

6.16 ~2 = 12 + i6~ 
re im ' 

where 8 is a small parameter. On writing the phase function e in the form 

6.17 8 = e + i 6e .  + 0(62 ) 
re lm 

and equating coefficients of 6 ° 61 , in the eikonal equation we obtain 

6.18 (Vere)2 = k2 re 

6.19 2 Ve .ve. = &2 
re im Im " 

In order to work with - i 2 
re 

6.20 f 
s 

u = ~ ds' , 
0 re 

directly rather than ~ we introduce a new variable 
re 

where s is arc length. In terms of u the ray tracing equations become 
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6.21 d2x 1/2 ax • ,,,, = 

du 2 

aA 2 

6.22 df~ 1/2 re 
du 2 = ay 

de 
re = X2 

6.2B du re ' 

deim A2 
6.2h = 1/2 

du ~m 

These equations are integrated by a predictor-corrector method. Since values of 

~2 and ~2 re im are required everywhere we interpolate to find the values of these quan- 

tities between lattice points. Fitting ~2 rather than ~ gives more nearly correct re re 

behavior near ~2 = 0 . 
re 

Now let {xj} be a set of values of x , not necessarily coinciding with corre- 

sponding coordinates of the lattice points. Whenever a ray crosses a line x = xj 

the pertinent data are stored for future reference. The horizontal phase and ampli- 

tude for a particular mode at an arbitrary point is obtained later by interpolating 

between the stored data. The pressure amplitude is computed by summing over all 

propagating modes. 

6.3 Comparison o f  computed amplitudes with observational data 

Two assumptions underlying the design of the computer program are that the speed 

of sound in the ocean is known reasonably accurately and that the acoustic pressure 

variations are due to a point source varying harmonically in time. 

However, since amplitude, or equivalently propagation loss data of the type in 

which we are interested are in fact gathered over a period of several days, the 

sound speed may change somewhat from its measured values during the course of the 

experiment. Furthermore, source levels must be high enough for the signal to be 

detected at large ranges. This is usually accomplished by using a dynamite explosion 

as source. The response at a particular frequency is then obtained by passing the 

received signal through a filter having finite bandwidth. In view of the above re- 

marks we cannot expect predictions and calculations to be in exact agreement. 
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Figure 7. Velocity-depth profiles (left) 
and corresponding first four modes 
(right) at various geographical 
locations for a frequency of 
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In the particular experiment to be analyzed, dynamite charges were detonated 

500 feet below sea level along a track 1500 nautical miles long, extending northward 

from 27°S0 ' N, 157o50 ' W to 52°S0 ' N, 157o50 ' W. Eleven equidistant velocity-depth 

profiles obtained from the measured data displayed in figure 5 were entered into the 

computer program. They are shown on the left in each frame of figure 7. We see that 

surface ducts were practically non-exlstent. Lack of relevant data prevented us from 

including any dependence of sound speed or bottom depth upon longitude. 

The computer program was directed to determine i00 modes for each velocity-depth 

profile using a frequency of Sl hz. The first four modes for each profile are illus- 

trated on the right in each frame of figure 7. Note that the fundamental modes are 

centered about the SOFAR axis, which rises from a depth of 2608 ft. (795 meters) at 

27°30 ' N to'about 164 feet (50 meters) at 52°B0 ' N. On the average, for each pro- 

file, 45 modes corresponded to RSR or SOFAR modes while the remaining 55 were B modes. 

Figures 8 and 9 display propagation losses for receivers at depths of 2500 ft. and 

10,800 ft. respectively, situated at 27°B0 ' N, 157o50 ' W. The top graph in each 

figure represents observational data while the middle graph shows computed results. 

The measured data and the computer predictions are superimposed in the bottom graph. 

Peak values of measurements and predictions agree to within a few decibels along the 

entire 1500 nautical miles of the track. The computer program did predict nulls of 

about i0 db. in magnitude which were not found in the data. Such sharp minima, if 

they really occurred, could be missed owing to the finite spacing of the source points, 

or, fluctuations in the ocean and the receiving filter could smooth them out. 

Figure 8 displays an interesting feature. The propagation loss decreases (i.e. 

the amplitude increases) with increasing range beyond 42 ° N. This may be explained 

by the fact that the 2500 ft. receiver is only 12~ ft. away from the SOFAE axis and 

the signal there is strongly affected by the amplitude of the few lowest modes. As 

the source ship moved north the source approached the SOFAR axis causing the amplitude 

of these modes to increase to such an extent that eventually the loss due to cylindri- 

cal spreading was overcome and the total propagation loss decreased. 

The 10,800 ft. receiver, on the other hand, Is well below the turning points of 

the first few modes and so the signal there is dominated by the higher modes. The 
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Figure 8. Propagation loss versus range for a receiver at a depth of 
2500 ft., a source at 500 ft., and a frequency of 31 hz. The 
receiver is fixed at 27030 ' N, 157°50 t W while the source 
moves northward. The top, central, and lower curves represent 
measured data, computer predictions, and measurements superimposed 
on predictions, respectively. 
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amplitudes of these are not greatly affected when the source approaches the SOFAR 

axis so that for this receiver cylindrical spreading dominates over the entire track. 

We should remark here that originally our computations differed systematically 

from the observed data by a few decibels. After thoroughly checking the calculation 

and finding no error we were led to question the data. It turned out that as the 

data were compiled the equivalent source strength at B1 hz of the dynamite charges 

had been systematically overestimated. When the original source strength was re- 

placed by the most recent estimate available to us we obtained the good agreement 

displayed in th% bottom graphs in figures 7 and 8. 

A limited number of cases were also investigated where certain parameters were 

varied to see what effect, if any, variations in surface loss, bottom loss, and at- 

tenuation would have on the above results. It was found that bottom loss had no 

detectable effect whatsoever, and that the results depended only weakly upon the 

attenuation. It was also determined that if the ocean had had East-West gradients 

in sound speed comparable with those in the North-South direction the radius of 

curvature of the rays corresponding to the dominant modes would be no less than 

2. × l0 5 nautical miles. This implies firstly that negligible error was committed 

in neglecting the dependence on longitude, and secondly that in this particular prob- 

lem the ray tracing procedure could have been replaced by the simple cylindrical 

spreading law. 
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WAVE PROPAGATION IN A RANDOMLY INHOMOG~EOUS OCEAN 
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Courant Institute of Mathematical Sciences 
New York University 
251 Mercer Street 
New York, NY 10012 

0. Introduction 

The purpose of this chapter is to present in a self-contained manner an analysis 

of some phenomena associated with random fluctuations of the sound speed of the ocean. 

In section 1 we formulate the underwater sound problem in a manner convenient for 

the stochastic analysis. We introduce several simplifying assumptions, such as the 

forward scattering approximation, but we maintain radiation losses into the ocean 

bottom. We employ a modal decomposition relative to the modes of the mean soundspeed 

profile. The resulting set of stochastic equations for the mode amplitudes as functions 

of range is the starting point of the stochastic analysis. 

In section 2 we give a brief but self-contained description of the relevant 

asymptotics for stochastic equations. The procedure described is nothing more than 

second order perturbation theory applied properly. More information regarding sto- 
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chastic problems can be found in [5-12]. References [8],[9] and [ii] contain many 

interesting examples and introduce the methodology systematically while keeping 

mathematics at a formal level. More mathematical treatments are [12], [17] and [21]. 

In section 3 we apply the method outlined in section 2 to the underwater sound 

problem. The result contains, in principle, the complete probabilistic characteriza- 

tion of the complex-valued mode amplitudes in the relevant asymptotic limit. This 

limit corresponds to propagation over distances that are large compared to the hori- 

zontal correlation length of the soundspee~ inhomogeneities, and to weak fluctuations 

in the soundspeed from its mean value. The wavelength is assumed to be of order one 

relative to the correlation length. 

Sections h-8 contain concrete information about the underwater sound problem that 

can be obtained by specializing the results of section 3. 

In section ~ we derive the coupled power equations. They control the dynamics 

(as functions of range) of the mean power transfer between the trapped (or propaga- 

ting) modes and radiation losses. We feel, as does Marcuse [16], for example, for 

the corresponding optical fiber problem, that the coupled power equations should be 

an important tool in analyzing fluctuation phenomena. We illustrate this in section 

5 where we take up the pulse spreading (in time) problem and show how to obtain 

Personick's results [18,19] in the present context. 

In section 6 we derive equations for the evolution with range of the fluctua- 

tions in modal powers about their mean values. These equations lead to some interest- 

ing conclusions when the number of trapped modes is large. There are many interesting 

problems in connection with power fluctuations that have not been analyzed yet. One 

can find some conjectures in [16], for example. Of course, one can also study higher 

moments and the statistics of relative phases of the mode amplitudes. The set up of 

section 3 contains all this information but it is a maJor task (possibly numerical) 

to extract it from there without additional simplifying assumptions. 

In section 7 we indicate very briefly how to calculate statistics of depth de- 

pendent quantities by superposlng modes and using results of previous sections. 
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In section 8 we examine the form of the coupled power equations at high frequency 

i.e., when the number of propagating modes is large. We find that they are well ap- 

proximated by a diffusion equation where range plays the role of time and ray angle 

plays the role of space variable. Such diffusion equations have been obtained before 

E23,24] by physical arguments that seem quite natural (cf. also [25],[26]). One can 

also give a derivation of these diffusion equations directly without first going to 

the coupled power equations (we do not do this here). It would be interesting to ob- 

tain comparable results for the coupled fluctuation equations. Numerical comparisons 

show that the diffusion equation is a very good approximation to the coupled power 

equations even when the number of propagating modes is not too large (say 10-20). 

This is another reason why a diffusion approximation for the coupled fluctuation equa- 

tions would be very useful. 

We wish to thank L. Dozier for reading the manuscript and suggesting several im~ 

provements (cf. also [270 for some interesting results extending some of the analysis 

given here). 

1. The physical problem 

Let p(r,e,z) denote the sound pressure field in cylindrical coordinates with z 

measured downward from the surface of the ocean (figure l) and with the time factor 

-i~t e omitted throughout. The pressure satisfies the following equation and boundary 

conditions : 

1.1 ~+~r+ _ I  1 ~ + + k2[n2(z)+a~(r,z)]p 
~r 2 r 2 ~e 2 

2wr 

r >_0, 0_< e < 2~, 0_< z < =, p(r,e,O) = 0 . 

Here n(z) denotes the mean index of refraction, n(z) = Co/C(Z) where c(s) is the mean 

velocity profile. This mean index of refraction is assumed to be a function of depth 

only. The fluctuations about the mean are denoted by ~(r~); they are random and 

they can vary with range and depth. We have assumed that the fluctuations do not 

depend on the azimuthal angle in order to simplify the ana~VSlS that follows. The 
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general case entails no essential difficulties. 

The parameter a in (1.1) characterizes the size of the fluctuations and it is 

typically small, ~ % l0 -2. The fluctuations by definition have mean zero 

!.2 <~(r,z)> = 0 , 

where <,> denotes ensemble average or expectation value. We also assume that 

~(r,z) - O for z sufficiently large, i.e., inside the ocean floor. 

1 12Tr In view of the azimuthal symmetry, ~ p(r,0,z)de , also denoted by p(r,z) , 

0 satisfies the simpler equation 

1.3 ~2p~r 2 + rl ~r + ~2p + k2[n2(z)+e~(r,z)]p -- 8(r) ~(Z_Zo ) 
~z 2 2vr ' 

0 < r < co, 0 < z < ~, p(r,0) = 0 , 

corresponding to (1.1), 

Next, we introduce the assumption that the stochastic effects we seek to analyze 

manifest themselves entirely within the cylindrically spreading regime. This means 

that there is a region around the source location large enough so that the emitted 

spherical waves have reached their asymptotic cylindrically spreading state. At the 

same time this region is small enough so that stochastic effects have not accumulated 

and can be ignored. The precise analysis of matching the field of a point source to 

the cylindrically spreading regime is given in [1] . We assume here that we may re- 

place p by p/~r~ symbolically 

i.~ p(r,z) + p(~,z) , 
Tr 

so the new p is scaled by the geometrical spreading factor. Neglecting a near field 

term of the form p/r 5/2 the scaled pressure field satisfies 

1.5 ~2p 32P + k2[n2(z)+E~(r,z)]p = 0 
~r 2 + ~z 2 
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r > O, z > 0, p(r,0) = 0 . 

In (1.5) the values of p are prescribed in some way at r = 0 by the matching-to-the- 

source procedure. Since we shall also employ a forward scattering approximation we 

postpone discussion of this until later. 

Let us consider the differential operator 

1.6 
d 2 

L ~--+ k2n2(z), z > 0 
dz 2 

zero boundary condition at z = 0 . 

This operator is selfadJoint in L2(0, ~) for a broad class of (normalized) indices of 

refraction of the form shown in figure 2 ([3]). Its spectrum contains finitely many 

discrete eigenvalues and a semi-inflnite llne, the continuous or radiation spectrum. 

We assume that the eigenvalues and eigenfunctions (the modes) satisfy the following 

equations and normalization conditions. 

1.7 L~p(Z) = S~Vp(Z), ~p(O) = O, p = 1,2 ..... N 

1.8 L~(z,y) = ~(z,y), ~(o,y) = O, -~ < y < k 2 

1.9 (~,~q) = f~p(Z)~q(Z)dz -- ~pq 

0 

i. I0 

where, 

and we have assumed that the mode functions are real. Note that N = N(k) i.e., the 

number of discrete or trapped modes depends on the wave number k = u/c ° and it 
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increases as k increases. The eigenvalues 8p = 8p(k) are the propagation constants 

of the trapped modes. The ocean is evidently a dispersive medium since modes travel 

at different speeds Co[SSp(k)/~k]-I 

Let us expand the solution p(r,z) of (1.5) in terms of the eigenfunctions of L, 

1.12 p(r,z) = 
N k 2 

cp(r)gp(Z) + I c(~',r)~)(z,y)dy • 
p--i _~ 

On inserting this expression into (1.5) and using the orthonormality conditions (1.9), 

(l.lO), we obtain the following equations for the mpdeamplitudes c (r) and c(y,r) . 
P 

N 
1.13 + + 

dr 2 q=l 

k 2 

+ ek2 I ~py(r)c(y,r)d~ = 0 , p = 1,2 ..... N , 

1.14 
d2c (y,r) N 

dr 2 + yc(y,r) + Ck 2 ~ ~yq(r)Cq(r) 
q--i 

k 2 

+ F-J(2 I ~fY'  (r)c(y' , r ) dy '  = 0 , -~ < y < k 2 . 

In (i.13) and (l.lh) we have denoted by ~ with subscripts the matrix elements of 

B(r) = B(r,,) , the fluctuation function, with respect to the modes~ 

1.15 ~pqCr) = (~(r)~q,~)p), ~py(r) = (1~(r)~Cy),~p) , 

0~qCr) = (~(r)~q,~(y)), O~,(r) = (~(r)vCy'),~(~)) 

In the way these matrix elements are arranged in (1.15) they form a real symmetric 

"matrix", the quotation indicating that some entries in the matrix are continuously 

indexed (the subscripts y and y' range over -~ < y,y' < k 2) . 

We shall assume in the following that the evanescent continuous modes ~(y,z) , 
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-~ < y ~ 0 can be neglected. This is a reasonable assumption because these waves do 

not propagate energy over long distances. It is also an assumption compatible with 

the forward scattering (or parabolic) approximation which we introduce next. 

Let us write the mode amplitudes in the following form % 

+ iBpr -iB r 
~p [Cp(r)e + cp(r) P ] p 1,2,. ,N 1.16 Cp(r) = , = .. 

c(y,r) = ~ [c+(y,r)e i~r + c-(y,r)e -i~r ] , 0 < y < k 2 

+ 

The complex random functions c±(r) and c-(y,r) are called the forward, with + , and 
P 

the backw.ard, with - , ~ropagation or mode amplitudes. This is consistent with the 

as sumed  t i m e  f a c t o r  e -iu'ec S i n c e  f o r  each  p = 1 , 2 , .  ,N and  f o r  each  0 < Y < k2 

a pair of complex functions is introduced, we may prescribe one additional relation 

for the pair. We take these to be 

i. 17 
e% r dcp(r) ÷ e_iSpr dc~(r) 

..... dr + dr = 0 

ei~r dc+Iy,r) +e-i~r dc-(y~r) = 0 
dr dr " 

We insert next (1.16) into (1.13) and (1.14) and use (1.17). This way we ob- 

+ c ± tain coupled equations for c~(r) and (y,r) which involve only first order deriva- 

tives in r . We assume that c-(r) and c-(y,r) can be neglected in these equations. 
P 

This constitutes the forward scattering approximation. Its Justification in the con- 

text of the stochastic problem rests mostly on the available evidence, experimental 

and numerical ([4]). It is believed to be very good for the underwater sound problem 

within a broad range of frequencies. At the end of Section 3 we give a more precise 

criterion, in terms of the statistical properies of the inhomogeneities and other 

quantities, that determines the range of validity of this assumption. 

The factors 8 -1/2 and y-i/4 
P 

will be symmetric. 

are introduced in order that the coefficients in (1.19) 
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With the forward scattering approximation, the equations for the forward propa- 

gating complex mode amplitudes are as follows (the superscript + is omitted from now 

on). 

I. 18 
(r) N i(8 -8 )r [k 2 i(~-8p)r 

dCp = cl [ ~(r)e q P c (r) + ci ) (r)e c(y,r)dy 
dr ~py ' 

p = 1,2,...,N 

N i(S -~)r 
+ 

2 

+ e i  I k l~yy, ( r ) e i ( ~ ' - d V ) r c ( y  ' , r ) d y '  , 0 < y _< k 2 . 

0 

Here we have introduced the notation 

1.19 
k 2 k 2 

= k 2 k 2 
  ,p(rl : 

We must now assign initial values at r = 0 for the system (1.18). This brings 

us back to the remark following (1.5) namely, that initial values for the pressure 

field (i.e. at zero range) must be obtained bymatching the cylindrically spreading 

Wave to a spherical wave. We shall assume that this has been done ([1]) and that 

1.20 ep(0) = Cpo , p = 1,...,N 

c(y,o) = Co(y), o < y _< k ~ 

~here Cpo and Co(Y) are given complex numbers. These numbers characterize the nature 
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of the source, i.e., the manner in which the source transfers energy into the trapped 

and the radiation modes. 

It is convenient to introduce matrlx notation to represent the system (1.18). 

We must allow, however, for discrete as well as continuous indices since 

p = 1,2,...,N and 0 < y < k 2 . With this convention we write % 

1.21 ~(r) = 
Wpq(r) Wpy (r) 1 

5,q(r) ~, (r) 

with the entries defined by (1.19). From our assumption ~(r) is a real-valued sym- 

metric random matrix. If we also introduce the discrete and continuously indexed 

vector 

1.22 c(r) = 

cl(r) 

cN(r) 

c(y,r) 

O<7<k 2 

and the diagonal matrix 

1.23 S=di~.(Sl,S 2 .... ,S~, .... %[ .... ) , 0 <~5k 2 , 

then we may write (1.18) in the compact form 

1.2~ d c(r) = eie-iSr (r)eiSr c(r) , r > 0 , c(O) = c 
dr o 

The random function ~(r,z) in (I.i) will not be used in the sequel so the notation 
will cause no confusion. 
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Here ~(r) acts as a matrix in the discrete indices and as an integral operator in the 

continuous indices. 

We shall refer to (1.24) as the coupled mode e~uations. They constitute an in- 

finite system of coupled stochastic equations in slowly varying form, i.e., with 

multiplying the terms on the right hand side. The matrix of linear operators on the 

right side of (1.24) is random with mean zero,<~(r)> = 0 , in view of (1.2). In 

addition ~(r) is statistically stationary, a property that derives from the station- 

arity of the fluctuations ~(r,z) as random functions of the range. We do not assume 

stationarity in the depth variable. Since w(r) is real and symmetric it follows 

from (1.24) that the total energy 

N k 2 

1.25 ~ ICP (r)I2 + I !c(y'r)I2dy ' 

p=l 0 

carried by the forward propagating trapped and radiation modes is conserved, i.e., 

it is independent of the range r . 

In the next section we discuss the methods for analysis of the stochastic 

equations (1.2~). These methods are then applied to (1.24) in Section B. 

2. Asymptotic analysis of stochastic equations 

We wish to analyze the behavior of the statistical properties of the solution 

C(r) of (1.2~), i.e., the statistics of the complex mode amplitudes as functions of 

the range r, when c is small. In order to describe as simply as possible the essen- 

tial points in the asymptotic analysis we shall restrict attention in this section 

to finite-dimensional systems of the form 

dyp(r) N 
2.1 = C ~ V (r)yq(r) , r > 0 , yp(0) = Ypo ' p = 1,2 ..... N 

dr q 
q=l 

2.2 
ie i (Sq-Sp)r 

Vpq(r) = ~pq(r) , 

or ~ more compactly, 
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2. B d~v(rl = aV(r)y(r) y(O) = Yo 
dr ' ' 

The matrix ~(r) = (~pq(r)) is assumed to have entries which are real, zero-mean, sta- 

tionary random processes and to be symmetric. Note that (2.1) or (2.3) is a complex 

system which we could write as a real system of twice the complex dimension N. 

Again, for the purposes of this section we shall assume that (2.3) is a real system 

with V(r) a general real matrix valued process with zero-mean. We shall not assume 

however that V(r) is stationary since, in view of the exponential factors in (2.2), 

it is not in the example of interest to us. The presence of the oscillatory expo- 

nential factors plays an important role in the analysis that follows. 

We are interested in the behavior of y(r) when ~ is small but r is large so that 

cumulative fluctuation effects have had the opportunity to develop. Specifically, 

we shall allow r to vary in the interval 0 < r < To/e2 where T o is some finite number 

which is arbitrary but fixed. % It is in this range that such stochastic effects 

emerge. We shall describe at first the behavior of <y(')> , the expectation of y('). 

This is no restriction in generality because (2.3) is generic in form. For example 

N 
-~(yp(r)yp,(r)) = e 

q,q'=l 
[Vpq(r)~p,q,+ 6pqVp,q, (r)Syq(r)yq, (r) 

which is again an equation of the form (2.3) for the doubly indexed vector 

yp(r)yp,(r), p,p' = 1,2,...,N . Later on we shall describe how one can obtain the 

behavior of the full probability distribution of y(°) , which is our main objective 

here. 

Let us rewrite (2.3) in integrated form 

fr 
y(r) = Yo + e V(s)y(s)ds . 

0 

Frequently the results below hold with T = ~ . Then the assumption ToS_<~ represents 
o 

no essential loss in generality, and it is not necessary to specify T o numerically. 
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Upon iterating this equation once we obtain 

2.5 Irv(s)YodS E21rl s y(r) = Yo + c + V(s)V(~)y(~)d~ds . 

0 O0 

We now take ensemble averages in (2.5) and use the hypothesis <V(r)> = 0 . 

This yields 

2.6 <y(r)> = Yo + E2 I r I s<v(s)v((~)y((~)>d(~ds ' 

0 0 

which appears to pose a "closure" problem since higher moments enter. 

hypotheses on V(r), which we explain below, one can show that 

Under certain 

27 <y(r)> = Yo ÷ 2 I r [S<v(s)V(o)><y(~)>dods + 0(~3) , 0 < r < ~o/~ 2 

0 0 

On dropping the 0(8 3) on the right side of (2.7) one obtains the first order smooth- 

approximation to <y(r)> ([5-9]) which we shall continue to denote by <y(r)> . 

In order to arrive at results that are sufficiently simple and useful one must 

continue beyond the smoothing approximation. First we rewrite (2.7) in differential 

form 

2.8 sr d<[(r)> = c2 <V(r)V(s)><y(s)>ds <y(O)> = Yo' 0 < r < • /e 2 
dr " o " 

0 

Now we apply the lons-tlme-Markovian ap~roxlmation to (2.8) which means that we pull 

<y(s)> outside the integral in (2.8), evaluate it at s = r and extend the integration 

to infinity. However, because of oscillatory factors as in (2.2) the integral to 

infinity will not exist and it must be replaced by 

2.9 

r +T 

V= llm¥ <V(s)V(~)>~ds . 
T+= 

r r 
o o 

The long-time-Markovian approximation y(r) of <y(r)> is thus given by solving 
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2.1o @(r)  = ~2Vg ( r ) ,  ~(o) - Yo 
dr  

We assume that the limit (2.9) exists and is independent of r > 0 . 
o 

We shall employ here exclusively the approximation (2.10) because it yields re- 

sults in their simplest and most useful form and because in the context considered 

here, the advantages that (2.8) may have over (2.10) are neutralized by its complex- 

ity. 

Let us restate directly the connection between (2.3) and the approximation (2.10) 

as a formal asymptotic limit. Let 

2.11 T = e 2 r ,  y6(T) = y ( T / 6 2 )  . 

Here T is the scaled range relative to the size of the fluctuations and yg(T) is the 

vector of mode amplitudes as functions of scaled ranges (with radiation neglected for 

simplicity in this section). We have that, as ~ + 0, 0 < T < To, <y8(T)> tends to 

y (T )  where 

2.12 d~(T) = V y (T )  y ( 0 )  = Yo dT 

with V defined by (2.9). 

In the form (2.12) given here the above asymptotic limit can be given a rather 

complete mathematical treatment ; see [10] and references to other work there as 

well as Stratonovich [ll] and Khasminskii [12]. In fact, one can show that the error 

in the approximation y(T) is 0(6) , uniformly in 0 < T < T o (T o < ~ but arbitrary). 

The condition on V(r) that we mentioned was needed essentially to allow the transi- 

tion from (2.6) to (2.7); it is called the mixing condition; we shall not give its 

technical meaning here ([10]). Physically, it means that the fluctUations p(r,z) 

and p(r+s,z') at two points separated in range by s tend to become statistically 

independent, in a sufficiently strong sense, as s becomes larger and larger. This 

is a perfectly acceptable assumption for the underwater sound propagation problem. 
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We show now how one can obtain the full statistical description of y(r) in the 

asymptotic limit corresponding to (2.12). As we describe in [10] , for example, 

the process y(S)(x) , defined by (2.11), converges as e ÷ 0 to a Markov process 

y(0)(~) , 0 < r < T o , so that it suffices to find the Fokker-Planck differential 

operator for the limiting process y(O)(w) . Let us outline how the derivation of 

the Fokker-Planck equation follows the pattern (2.3) ÷ (2.10) or (2.12). 

Let f(y) be a smooth function of N real variables y = (yl,Y2,... ,yN) . Let us 

solve (2.3) in the interval [s,r] , 0 < s < r , with y(s) = Yo given and let us denote 
~u 

the solution by y(r,s;y o) • Define y(r,s;y o) by 

rU 
2.13 y(r,s;y o) = f(Y(r,S;Yo)) • 

By elementary computation we find that 

~(r,s ;yo ) 
2. lh SS + E 

N 
v (s)y ~-A--~(r,s;y o) = 0, 
pq oq BYop p,q=l 

~( ) = f(y ) s < r , Y r'r;Yo o 

Thus, (2.14) is formally again a problem of the same form as (2.3). Now however the 

independent variable is s and it runs backwards and the operator corresponding to V 

of (2.3) is a differential operator. Suffice it to say that this formal correspon- 

dence of objects can be carried all the way to obtain the asymptotics corresponding 

to (2.8), (2.10) or (2.12); see [6, 8, ll] 

Let us now give the form of the Fokker-Planck operator corresponding to the 

limiting Markov process y(O)(w) and whose derivation follows the lines Just sketched. 

Let P(x ,y ;Yo ) denote the transition probability density of y(0) (T) given y(0) (0) = Yo' 

i.e., 

p(T,y;yo)dY = p{y(O)(T)Edy I Y(O)(O) = Yo } • 
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Then, P(x,y;yo ) satisfies the equation 

8P (T ,y ;Yo ) N 82 N 
- ~ 8-~- (bpqYJ) 

= ~ q,=iBYp~yp, (apq,p,q,yqyq,P) p,q=l 8yp 2.15 8T p,q,p, 

T > 0 , P(0,y,y o) = ~(y-yo ) 

The diffusion coefficients apq,p,q, and the drift coefficients bpq are given by 

t +T 

lfO fs q(O)Vp, 2.16 ~q,p,q, = lim ¥ <Vp q,(sl>a~ds , 
T+® 

t t o o 

t +T fofs ( o ) v  , bpq = T÷~lim 1 t t q'=l q q Pq (s)>dads . 

o o 

These limits are assumed to exist independently of t o , which is the case if Vpq(r) 

is given by a formula such as (2.2) with (~pq(r)) a stationary process. 

In the following section we also employ the adJoint of the Fok_ker-Planck equa- 

tion called the backward Kolmosorov equation for the Markov process y(0)(r) . If 

f(y) is a smooth function and if y(0)(0) = Yo then 

2.17 u(T,yo) = <f(y(O)(T))> = #p(T,y;yo)f(y)dy 

satisfies the equation 
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~U(T 'Yo) N B2u(T 'Yo ) N Bu(T 'Yo ) 
- - - -  [ apq,p' q'YoqYoq' + ~= ' 2.18 ST p ,q ,p ' ,q' =I SYop SYop ' p, -i bpqyOq SYop 

T > 0 , u(0,y o) = f(yo ) . 

The differential operator on the right hand side of (2.18) is called the infinitesi- 

.mal ~enerator of the Markov process y(0)(T) . 

We restate once again the approximation result we shall be using. Let y(T) be 

the process defined by (2.3) and let y(C)(T) be defined by (2.11). Then for any 

smooth function f(y) we have that 

2.19 <f(y(e)(T))> > <f(Y(0)(T))> = U(T,Y o) 0 < r < T 
e~0 ' o ' 

where u(T,y o) satisfies (2.18) and the error in the approximation is 0(g). 

To obtain the asymptotic behavior of averages of y(E)(W) at the different scaled 

ranges, T 1 and T 2 say, we use the Markov property of the limit process y(0)(T) • The 

Joint probability density of y(0)(w I) and y(0)(T2) , 0 ~ T 1 ~ T 2 , is given by the 

product 

P (T2-T1 'Y2 ;Yl ) P (T1 'Yl ;Yo ) ' 

so that if we know the solution P(T,y;y o) of (2.15) we can compute the approximations 

to averages of 2-range quantities. 

Naturally solving (2.15) will turn out to be a very difficult problem. There 

is however a surprising amount of information one can obtain without solving the full 

equation. We should also remark that since the presently available mathematical 

theory referred to above is not sufficient for our problem (1.2~), the above results 

will be applied formally in the following section. 
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3. Application of asymptotic methods to coupled mode equati0ns ' 

In this section we shall apply the asymptotic method described in the previous 

section to the system (1.24). .~ne finite-dimensional vector y(r) of Section 2 must 

now be replaced by the vector c(r) of (1.22) which includes the continuously indexed 

radiation mode amplitudes. In addition, we must allow for the fact that c(r) is 

complex-valued. For this purpose we consider Jointly the vector c(r) and its con- 

Jugate c*(r) which satisfies the complex conjugate of (1.24). Recall that the matrix 

~(r) is real and symmetric. It is more convenient to deal with c(r) and c*(r) rather 

than their real and imaginary parts. 

Instead of writing the answer directly by applying, with appropriate modifica- 

tion, the formulas of the last section we shall proceed in a manner that exposes 

again the ideas in the derivation. The first step consists in obtaining here the 

analog of (2.1h). Let c(r,s;c o) denote the solution of (1.24) with s < r and initial 

condition c(s,s;c o) = c o , and let c*(r,s;c~) denote its complex conjugate which 

satisfies the complex conjugate of (1.24). If c = x + iy(i = /IT) is a complex vari- 

able we define, as usual, complex derivatives as follows. 

3.1 Bc =~('~x-i ), ~e'--~(Tx ÷i 3y , 

Let f(c,c*) be a smooth, real-valued function of its arguments and consider 

3.2 u(r,S~Co,C ~) = f(c(r,S;Co) , c"(r,s;c~)) 

It is easily verified that u satisfies the following analog of (2.14). 

3.3 
Su(r,S;Co,C~) 

~s 
+ ~v(s)u(r,s;co,c ~) = o , s < r , 

u(r,r;Co,C ~) = f(Co,Co~l 
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Here V(s) is the differential operator given by 

3.4 v(s) = i 
N i(Sq-Sp)S 

~pqe Ooq BCop 
p,q=l 

+i 
N !k 2 i(~q-Sp)s s ........ 

dy~py(S)e Co(Y) ~Co p 
p=l 

+i 
N [k 2 i (Sp- ~)s 

J dy~yp (s)e Cop 
p=l 0 

+i 
k ik 2 i(~'-~)s 

dyd~'~W,(e)e Co(~') o ~  
0 0 

+ c.c. 

Here we have used the abbreviation c.c. to stand for complex conjugate of the pre- 

ceding expression in the sum and we have denoted by 8/~Co(Y) the variational deriva- 

tive. The elementary formal calculus of variational derivatives will be employed 

without special comment in the sequel ([13]). In particular, complex variational 

derivatives are defined in the same way as (3.1). 

We continue now with the asymptotic analysis of (3.3). According to the outline 

given in Section 2 we first rescale the problem using 

2 2 
3.5 (~ = ~ S , T = g r , 

to denote the scaled initial and final ranges respectively, and define the scaled 

complex mode amplitudes and u of (3.2) as a function of these scaled variables by 

3.6 c(~)(T,~;co) = c(T/e2,~/a2;c o) 

ue(T,~;Co,C~) = u('~le2,olc2;Co,Co *) 
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as E ÷ 0 , <uC(T,~;Co,C~)> tends to the function u(T-G,Co,C~) which Then, depends on 

T-G only and satisfies the backward Kolmogorov equation 

3.7 ST = Vu , T > O, R(O,Co,C ~) = f(Oo,C~) 

The infinitesimal generator V is given by the formula 

r +T  I°I . 
3.8 V -- lim ~ <V(o)V(s)>dOds , 

T+m 
r r 
o o 

corresponding to (2.9) and with V(s) given by (3.4). 

In order to find the explicit form of the infinitesimal generator V of the limit 

M~rkov process c(O)(T;Co,C o) , to which the process c(e)(T;Co,C~o) converges, we must 
insert (3.4) into (3.8) and perform the indicated ensemble averages and integration. 

This calculation is straightforward but lengthy so we shall omit it and write the 

result directly. To simplify the notation we shall drop the subscript o from c and o 

c* . We find that 
O 

3.9 Cq ~ (Cq, 8-~p,) 

I i (~q-flp)tdt } 82 
+ I F<~pq(t)~p'q' (0)>e CclC~ v 8Cp8 c;--------7 
6P-Bq=flp ' -flq' 0 

- ~ ~'¢ cci~" c 
6p=Bq 0 P 

2 I ~ -i(B -~)t 1 + ~ ~ [kjk 2 " dydy' J<IIyq(t)~Iyp(0)>e q dt 

flp=flq 0 0 0 

8 2 
• ~(-¢--¢' )c~cp 6 c ( x '  Y6c*('~) ÷ c . c .  
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Here the summations extend over all indices for which the indicated equalities 

hold, c.c. stands again for the complex conjugate of the first part of the operator 

and A(y) is defined as identically equal to zero for y # 0 and equal to one at 

y = 0 . From this definition of A(y) it follows that the term with the second func- 

tional derivative in (3.9) will be zero tmless a delta function ~(y-y') appears from 

the differentiation. 

We note that in the derivation of (3.9) we have employed the symmetry of the 

random matrix ~(r) with elements given in (1.19) and we have also employed the hy- 

pothesis stated below (1.2) that the random fluctuations of the refractive index 

~(r,z) vanish for sufficiently large z. 

The operator ~ of (3.9) has the following important property. If f(c,c*) is a 

.. c ~* ~* .,c~ only, then ~f(c,c*) function of the discrete components ci~c2,. , N,~I,~2,.. 

* * .. ,c~ only. This means that in the asymp- is also a function of Cl,C2,...,Cn,C!,c2,. 

totic limit under consideration the statistical properties of the propagating trapped 

mode amplitudes can be described independently of those of the radiation mode ampli- 

tudes. This decoupling of the propagating trapped modes from the radiation modes is 

a direct consequence of the assumption that the refractive index fluctuations ~(r,z) 

vanish for large z . The physical meaning of this decoupling is clear under this 

hypothesis because it is impossible for the inhomogeneities to cause energy transfer 

from the radiation modes into the trapped modes. Of course, energy can escape out 

of the trapped modes into the radiation modes and so get lost into the bottom of the 

ocean. This effect is due to the third term in the definition (3.9) of V . 

Because of the importance of the decoupling we restate the results of the asymp- 

(c)(T) = (c~)(T) .... c N , )) be the complex- totic analysis again as follows. Let c T 

valued, random, trapped-mode amplitudesTat scaled range T , as in (3.5), (3.6) and with 

(C(l~)(0),c~C)(0) ..... CN(e)(0)) = (Col,Co2 .... ,CON) given, nonrandom, initial mode 

amplitudes at range zero. Then, as E ÷ 0 and the scaled range stays finite, the 
~ A 

(e)(T)) converges to the diffu- stochastic process CT(C)CT)--(C~C)(T),C(~)(T) ..... c N 

sion Markov process CT(T) = (Cl(T),C2(T),...,CN(T)) with values in C N (the complex 

t The subscript T stands for "trapped". 
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N-dlmensional space) whose Fokker-Planck oFerator V~ is the formal adJoint of Vgiven 

by (3.9) with the fourth sum (the variational derivatives) omitted. Let P(T,Cl,.°., 

CN,C ~ ..... c~;Col ..... CoN,C~l ..... C*oN) denote the transition probability density of 

(Cl(W),...,CN(T)) , i.e., the solution of the Fokker-Planck equation 

~. lO ~-? -- v~ ~ ,  p(o,c,c*;Co,C*) = 6 ( e - C o ) ~ ( c * - c * )  

with V--~ defined as above and c = (Cl,C2,...,c N) , etc. Then, as we mentioned at the 

end of Section 2, all statistical properties of (C~(T),...,C~(T)) can be obtained in 

the limit ~ + 0 from the solution P of (3.10). 

In order to study further the statistical properties of C(T) , the limiting 

mode amplitudes (with or without the radiation modes), we introduce the simplifying 

assumption of nondegeneracy ~ of the modes as follows. 

3.11 The propagation constants 81,...,8 N are distinct 

along with their sums and differences. 

Let us note that this assumption is violated when azimuthal fluctuations are present, 

i.e., ~ = ~(r,z,8) . However, the results below can be recovered if we assume that 

the fluctuations are statistically rotatlonally invarlant about the vertical axis at 

the source; see ([14]) for some comparable results. Thus, (3.11) is not as strin- 

gent as it may appear and we proceed to utilize it next. 

In the nondegenerate case (3.11) the infinitesimal generator V of the limit 

Markov process c(T) (with radiation modes included), given by (3.9), simplifies after 

some rearrangements to the following form 

3.12 

^ ~ ^* 
+ a A A* - ~ d'C BpxC p ÷~pxC*_ 

p=l PP pp pp p=l p 
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N k 2 

p--1 0 

Ik2dydy,A(y_y, I ̂  82 b. ~2 1 
)cpc~ bpy ~c*(-f')~c(y) + p~ ~c(~")~cn(¥') 

0 

Here 

3.13 = 8 - c* ~ = - A n 

and 

3.14 apq = ~<~pq(t)ppq(O)> coS(Sp-Sq)t dt 

apq= ^ ~<ppq(t)~pq(O)> sin(Sp-Sq)t 

0 

3.15 apq = ~<ppp(t)~qq(0)> dt 

^ ~ <Ppy (t)Wpy (c) >ei(flp-~)t 3.16 bp~ ~ dt , p ,q=l,... ,N . 

0 

The infinitesimal generator for CT(T) , the trapped mode amplitude limit process, is 

given by 

3.17 V T = ~ i a (A A* + ~ A A* + iapq(Aqq-App) 
_ _ 12 pq P~P~ ~pl p~pp~ l<q<p<N 

!I ̂  ~ bnc~ ~ I~ ! ~ A An bpCp ~ ÷ + 
PP PP PP P P ~_ p=l p i 
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where 

3.18 bp = j bpyd Y . 

0 

ThUS, the process CT(T) , T > 0 is a diffusion Markov process with state space C N 
-- I 

the complex N-dimensional space. Note that the coefficients (3.1~), (3.15) are power 

spectra of the matrix elements of the fluctuation process ~(r,z) . 

In Sections ~ - 8 we study in detail properties of the process CT(T) ~ second 

moments,fourth moments, its behavior as N ÷ =,etc. All results herein follow from 

the form (3.17) of the infinitesimal generator. In Section 5 we discuss some simple 

generalizations to account for slow modulation effects not incorporated into (3.17). 

No essential changes are made there however. 

In the remainder of this section we shall USe the full operator (3.17) to show 

that when radiation is present the energy of the waves decreases to zero as the 

scaled range T increases to infinity. 

Assume that 

3.19 
A ^ 

0 < 6 = rain (bp + b;) 
I~_<N 

and let 

N 
Icl 2= ~ c c* 

p=l P p 

Then, it can be readily verified from (3.17) that 

3.2o VTIcl 2 £ - lcl 2 . 

The statement of the result is now this. For any c > 0 and any starting value c(0), 

8ay~ 
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3.21 
,~ ,, P{ICT(T)I 2_< (ICT(0)12+E)e -~;x, for all T_> 0} _> ICT(0)I2+E . 

Thus, for Ic(o)l sufficiently small, the probability that Ic(~)l 2 will dec~ expo- 

nentially fast as w ÷ = can be made arbitrarily close to one. 

Restated in more physical terms, we have that because of radiation losses the 

energy carried by the trapped modes will decay exponentially with range with prob- 

ability as close to one as desired. 

The demonstration of (3.21) requires some facts about stochastic differential 

equations and can be found in [15, p.325]. 

The validity of the forward scattering approximation, which we have adopted, can 

be assessed on the basis of the results of this section (and the previous one) applied 

to the full system of mode amplitudes c + and c- . It is necessary that 

3.22 ,~ <~pq(t)~pq(O)> coS(Bp+Bq)t dt , p , q = l , . . . , N  , 

be negligibly small compared to apq of (3.14) along with similar relations for coup- 

ling to radiation. This is a useful condition for checking the validity of the for- 

ward scattering approximation in the stochastic context. 

4. Coupled ~ower equations 

In Section 3 it was shown that the limiting Markov process c(W) has a transition 

probability density satisfying (3.10). Once this density function p is known, a 

complete statistical description of the limiting behavior, as c ~ 0 , of the mode 

amplitudes ce(T) is available. 

In this section (and in section 6) we shall obtain information about CT(X) T 

without actually solving for p. This is possible because VT defined by (3.17) has 

the following special property. The coefficients of the second derivatives are 

Information about c(T) not contained in cT(T) , the trapped mode amplitudes, can 

be obtained by using the conservation relation (1.25). 
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homogeneous of degree 2 and the coefficients of the first derivatives are homogeneous 

of degree 1. Thus, we can obtain closed equations for moments of CT(T). Since we 

shall work exclusively with the trapped modes, we shall drop the subscript T from 

now on. 

Let 

4.1 Wr(W) = [ CrC~ P(T,c,c*;Co,C~)dcdc* 

<lcZ(T)12>'~ ' , T>o, r~1,2 . . . . .  N. l i m  

Using the equation 

~,.2 a pP = V * P  
aT 

and the form (3.17) of Vwe obtain after an elementary computation the coupled power 

e~uati ons : 

dW r ( "~ ) ~T 
4.3 dT = -brWr(~) + ~ (a~%-%rWr)' T > 0 

p=l 

% ( 0 )  = ICor 12 r = l , 2 , .  ,N t " °  " 

Here a is as in (3.14) 
Pq 

apq = f 
<~pq(t)~pq(0)> coS(Bp-Bq)t at , p,q=l,... ,N . 

and b is given by 
P 

k 2 

0 --~ 

~.5 bp = 2 Re dt<~py(r)~p7(0)> coS(Sp-~') , p=l ..... N. 
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We note that the energy transport coefficients a are nonnegative, being power 
Pq 

spectra, and sy~netric and the radiation loss coefficients b are nonnegative, being 
P 

integrals of power spectral functions. 

If the smallest radiation loss coefficient is positive, then the solution of 

(4.3) tends to zero as T ÷ ~ This is elementary; in fact we have 

N N N 

d___ =~ Wr(T) = - ~ brWr(T ) < - minb r= ~ Wr(T) 
dr r i r=l P P i 

from which an exponential decay is obtained. 

On the other hand if bp 0 , p=l,2,... ,N then, Wr(T) tends to equipartition as 

N 
1 I 

T÷ ~ r p=l 

2 
, r=l,2,... ,N. 

Here we must use the symmetry of the coefficients a which goes back to the symmetry 
Pq 

of ~pq . 

To obtain the mode amplitude correlations at the different scaled ranges, we 

use the Harkov property of the limit process c(T) . Thus, if 

~.6 Wrs(r~ j) = lie <c~(~+a)c~*(T)> 
¢40 r s 

II ~ ~* ~ ~ 
= CrC~P(~,c,c*,c,c }P(~,c,c*,Co,Co*}dcdc*dcdc* , 

we find from (4.2) and (3.17) that (setting r=s for simplicity) 

4.7 Wrr(T+~,T ) -- Wr(T) exp ~ g arp+iarp)+b r 
pl 

A A 

where bp is defined by (3.16) end (3.18) and arp,arp are defined by (3.14). 

(4.7) Wr(T) are obtained by solving (4.3). 

In 
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The coupled power equations (h.3) constitute a basic tool in studying energy 

transport in the ocean %. The reason is simply that equations (h. 3) are 

(i) relatively easy to solve and make sense intuitively, 

(ii) depend on relatively few physical parameters, 

(iii) yield information about quantities of direct physical interest: average 

mode powers 

In implementing (h. 3) one must decide what the coefficients a and b are. If N is 
Pq P 

not too big (N<_10, say) i.e., at low frequency, the coefficients may be estimated 

from data. Although (h.3) are valid only asymptotically (cf.(4.1)), they are ex- 

pected to give reasonable results under very general circumstances. Therefore the 

data used for the estimation need not be very deeply inside the theoretical region 

of validity of the asymptotics. Of course one may attempt to derive formulas for 

the coefficients a and b by constructing theories for the fluctuation process 
Pq P 

in (I.i). 

If N is large but the coefficients a are negligibly small if IP-ql >l, then 
Pq 

(h.3) can be approximated by a diffusion equation which again makes good physical 

sense and depends on an optimally small number of physical parameters. We consider 

this ease in detail in section 8. 

5. quasi-static and slowly-var~in~ coupled power equations 

In this section we shall discuss the coupled power equations (h.3) in some de- 

tail. We shall introduce time dependence into (h.3) in a phenomenological manner and 

we shall study various limiting forms of the resulting equations. 

It is clear that the coefficients a and b defined by (h.h) and (h.5) need 
Pq P 

not he constants. They can be functions of the scaled range T i.e., they can be 

slowly varying functions of the range. The coupled power equation (4.3) are valid 

as they stand with T-dependent coefficients. 

We note that the average mode powers Wp(T) p=l,... ,N , are functions of the 

They have been used very effectively in fiber optics by Marcuse [16]. 
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Let v be the group velocity of the pth mode (cf. below (1.11)) 
P 

-1 

5.1  --Col. +k j 

We shall asst~e that the average mode powers as functions of time and scaled range, 

Wp(t,T) , satisfy the equations 

5.2 
~Wp( t ,T )  + - - l  ~Wp( t ,T )  = ~ (a W - a p J p )  - bpWp . 

~T Vp St q=l pq q 

This is a reasonable extension of (2.3) and can be derived from first principles but 

we shall not do so here. 

Equations (5.2) must be supplemented by initial and boundary conditions. Be- 

cause of the nature of the approximations that led to (5.2) it is natural to suppose 

that t E(-~,~) and T > 0 so that 

5 .3  W p ( t , 0 )  = Wpo( t )  , p = l , 2  . . . . .  N , - ~ < t < ~ ,  

is given. This is the time-pulse problem. 

defined for t > 0 and - ~ < T ~ ~ ~rlth 

The corresponding space-pulse problem is 

5 . ~  ~ ( o , ~ 1  = ~ o l ~ l  , p = l  . . . . .  ~ ,  - ~ < T ~ * ,  

given. Clearly (5.2) and (5.3) constitute the appropriate problem for us here. 

The two problems (5.2), (5.3) and ~5.2)~(5.4) are dual to each other; both ~re 

well posed aud the analysis below applies to both. 

The physical meaning of the time-pulse problem is the following. The source 

(cf. (1.1)) is not precisely time harmonic with frequency ~ but is a narrow band 

signal centered about ~, The input power of the source into the forward propagating 

modes is described by the function Wpo(t ) . In the approximation we are working here 

the average mode powers travel in space-time according to (5.2). In the absence of 

stochastic effects, a = 0 and b = 0 (we assume no absor~ion), equation (5.2) tells 
Pq P 
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us that the pulses launched at T:0 (range zero) propagate undistorted with the group 

velocity of the corresponding mode: 

5.5  Wp( t , z )  = !#po(T-vp t )  . 

What is the effect of mode coupling upon the space-tlme behavior of the pulses 

Wo(t) , p=I,...,N, - = < t < ~ , launched at range zero (T=0)? Even though (5.2), 

(5.3) is a realtively simple problem, well suited for numerical computations, it is 

not easy to get a general idea of what Wp(t,w) looks llke without additional assump- 

tions. These assumptions fix the size of the terms in (5.2) relative to each other. 

We shall examine two cases as follows. 

(1) 
SW 

~---~ and w The terms 
v St -bp P 
P 

are comparable to each other but the term 

N 

5 6 ( a p h  - %Wp) 

is an order of magnitude larger. 

(li) 
SW 

The term -bpWr is of order one, lv --P'St is an order of magnitude bigger 
w P 

and the term (5.6) is an order of magnitude bigger than s~--- S . 
v 
P 

In both (i) and (ii) the coupling term (5.6) is assumed to play a predominant role. 

This is reasonable since, after all, mode coupling is what we want to analyze. 

To describe (i) and (ii) we introduce a small parameter z , not related to the 

parameter E characterizin~ the size of the fluctuations in the index of refraction 

Ccf. (i.i)). 

Let us also denote by 

-1 
5.7 s = -- p=l,2,. .. ,N, 

p v 
P 

the negative slowness of the modes. Assumption (1) corresponds to the following. 



(i') 

ISS 

i and Bp remain 0(i) and we study (5.2), apq is replaced by ~ apq but Sp 

(5.3) in the limit ~ ÷ 0 , v = 0(i) . 

Similarly assumption (ii) corresponds to the following. 

i i and b remains 0(I) . (ii') apq is replaced byTapq , Sp is replaced by ~Sp P 

We study (5.2), (5.3) in the limit g ÷ 0 , v = 0(i) . 

The analysis of (i') and (ii') is carried out by first and second order pertur- 

bation theory respectively. We follow the formulation of ([17] Theorems 1 and 2 

p. 219) which fits precisely the needs of the present situation. 

Define ap by 

%= 
~#p 

and the matrix A by 

5.9 A= 

Define also 

5.10 B = 

I 
'a I 

a21 

a12 " " " alN1 

I -a 2 ... a2N 

aN2 .... %J 

0 ... 0 1 

b2"'" bN I 

5.11 v = 

v I 

0 

0 

0 ... 0 ] 

v 2 
, S= 

s 1 0 

0 s 2 

6 

• . . 0 ] 

J • S N 
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1 
5.12 P = 

i i 

i i 

I i] 
Let us first consider (i'). Then (5.2), (5.3) reduce to the following. 

5.13 
~w e 

1 AW~ + s ~w Bw ~ T>o 

w~(t,0) -- w (t) , 
o 

where We(t,T) stands for the N-vector of the functions W~(t,T) . Now A has zero as 

eigenvalue which is isolated if we assume, as we do, that 

5.1~ a > 0 , p~q . 
Pq 

Moreover P is the projection matrix onto the one-dimensional eigenspace spanned by 

the elgenvector T (1/N .... ,l/N) corresponding to the elgenvalue zero. It is easily 

seen (see the appendix) that if T > 0 i.e., we are away from the source region (as we 

must be anyway for reasons explained in Section l) then 

5.15 llm w~(t,~) ~ -- ~(t,~) , T > 0 
g$o 

y 

where the function W(t,T) satisfies 

5.16 B'r = + s "  - ~ ' w "  " ~ > o  

N 
i X ~½p(t) -~o(t) , ~(t,o) = W p=l - ~ < t < ~  

t a -- a 

pq qP 
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and 

N 
1 5.17 ~ = y I s 

p=l P 
(cf. (5.7)) 

N 

5.18 b = ~ p=l p 

If we define 

5.19 ~ = _ i , 

then the solution of (5.16) is 

5 .20  ~ ( t , T )  = e -~T % ( T - r - r t )  . 

The conclusions are as follows. In case (i') and away from a neighborhood of 

the source, in the limit of strong mode coupling,the pulse shape of each mode power 

function tends to the same function (5.20) which displays damping with distance from 

the source (coupling to radiation) and progagation with speed ~ which is given by 

5.21 
p=l 

(cf. (5.7), (5.17), (5.19)) 

i.e., the harmonic mean of the group velocities. 

Let us also consider case (ii'). Equation (5.2), (5.3) becomes 

5 • 22 ~W ~ ~.~ I ~W e ~ ..... AW ~ + ~-S ~ -  BW ~ , r > 0 , 

WE(t,0) = Wo(t) , - ~ < t < ~ , 
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which is analogous to (5.13) Again we shall leave details to the appendix and 

discuss the results of the asymptotic analysis. 

Let 02 > 0 be defined by (I = identity matrix) 

5.23 
1 02 

I = - P(S - PS)A -1 (S - PS)P . 

Note that -- A 1 is well defined, despite the fact that A has zero as &n elgenvalue, be- 

cause it acts on elements that have no components in the nullspace of A. Unfortunately, 

one can not be more explicit about the determination of o 2 since, in general, A "l 

is not given explicitly. The computation is elementary, however. Let b and ~ be as 

before. 

The result is that for T > 0 and fixed, W~(t,T) behaves as ~ ÷ 0 llke the solu- 

tion of 

N 

Wop(t) ' - < t < ® ~(t,0) = (t) = 

p=l 

More s p e c i f i c a l l y ,  we have tha t  I W E - ~ E I  ÷ 0 as ~ ÷ 0 f o r  a l l  p = l , 2 , .  . .  ,N , T > 0 
P 

f i x e d  and un i fo rma l l y  i n  - ® < t < ~ .  Note t h a t ,  as i n  (5.13) ,  (5 .16) ,  the ~symp- 

totic pulse form is the same for all modes but now we have diffusive pulse sprea~ng 

1 o2 
in time due to the term ~ B2/~t 2 . 

To get a better feeling for the nature of the approximation (5.24) let us assume 

that 

5.25 ~ (t) = a e- t21eY2 
° ' 

i.e., a Gausslan pulse of width Y • Then, 
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I87 

- ( t -  1 -~T)2/2(~2+T~ 2) 

from which we conclude that the pulse spreading factor is 

5.27 
~2 ] 1/2 l+T~ 

The interesting thing about this conclusion is that pulse spreading of the time-pulse 

is proportional to the s%uare root of the distance from the source. 

Let us elaborate on this further T. Given that many modes propagate and they 

couple strongly, pulse spreading is proportional to the square root of the distance 

from the source and not proportional to T as would be the case in the absence of mode 

coupling. Thus random mode coupling has a certain beneficial effect on signal propa- 

gation. Of course, it is assumed that all approximations that led to (5.26) are sat- 

isfied reasonably well (in particular (ii') above ). 

Appendix. First and second or der~erturbation theory for Boltzmann-like e%uations 

Instead of giving a general treatment, like in [17], we shall deal with finite 

dimensional matrices which avoid technicalities but display all the features of the 

problem. In particular, we shall give a coordinate free analysis, independent of 

spectral theory so the results make sense in great generality TT. 

Let B be an N×Nmatrix such that 

5A.I e Bt --~ P , t ÷ ~ , 

t This is the effect discovered by Personik [183 and explained as above by Marcuse 
[19]. 

t~The notation that follows differs from the one of section 5 but agrees with [173 
(where the terminology "Boltzmann-like" is explained). 
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where P is a projection m~trix, projecting into the null space of B . 

be N×N matrices. 

Theorem 1 (First order perturbation theory) 

For any t > 0 and any N-vector f 

Let A and C 

5A. 2 e(B/e+A)t f ~ ePAPt pf , 

provided (with C a constant) 

5A. 3 Ie(B/c+A)tf I ~ CifI. 

Proof. 

From the identity 

5A.4 e (B/~+A)t = e Bt/E + I t e (B/~+A)(t-s) Ae Bs/~ 

0 

and (5A.1) it follows that we must show 

ds 

5A. 5 e (B/e+A)t Pf ÷ e PAFt Pf , 0 < t < T < ~ , 

Let 

u~(t) = e(B/¢+A) t pf , 

~(t) = e PAPt Pf , 

and 

5A. 6 v(t) = - B-l(A-PA)u(t) . 

Note that B -I is well defined since P(A-PA) = 0 (~redholm alternative). 



We have that 

+ A -  

: -(~+ A- ~t)(u(t) 

= -  ~rr(t)÷ A--~ 

= o ( ~ )  

~) (uC (t)-~(t)-av(t) 1 

+ e~(t )) 
u(t) + E AB-I(A-PA)u(t) - B-I(A-PA)PAPu(t) ) 

Hence indeed (1"1 is Euclidean norm) (with Pf=f) 

5A. 7 sup 
0 <t <T <~ 

Jue(t)-~Ct)J = 0(e) . 

For this last conclusion we make use of (5A. 3) clearly. The proof is complete. 

Note that if B has also pure imaginary eigenvalues (5A.2) still holds provided 

Pf=-f i.e., the starting vector is in the null space. The "initial layer" behavior, 

however, requires no oscillatory mode. 

Theorem 2 (Second order perturbation theory). 

For amy t > 0 and any N-vector f 

5A. 8 lim le(B/e2+A/e+C)t f- e (PAP/a+V+PCP)tPfl = 0 , 

where 

5A. 9 V = - P(A-PA)B-I(A-PA)P = - PAB-I(A-PA)P 

and it is assumed that (C a constant) 

5A. 10 I eC'Bla2+Ale+C)tf ~ ~1~1 
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and 

5A.11 ie(PAP/ '+V+PCP)tf I <_ clfl. 

PAP 
Remark 1. Note that the matrix --g- + V + PCP has the dimensions of the null 

space of B and hence it is much smaller than N×N, in general. Assumption (5A.10) is 

an a-prlori estimate which in many cases of interest is easily obtained. 

Remark 2. The terminology is not standard but we are, in fact, concerned with 

second order perturbatlon theory. The result (5A.8) is a nice way to express the 

answers in a general coordinate free way. For the case PAP - 0 see [20]. 

Remark 3. If PAP has only pure imaginary elgenvalues, then one can show easily 

that 

5A.12 

where 

I e-PAPt/ge(PAP/g+V+PCP)t Pf - e(V+P--C~)t I = O(E) 

5A.13 V + PCP = lim ~ e -PAPs (V+PCP)e PAPs ds. 

m~ o 

This is nothing but the method of averaging and the proof of (5A.12) is elementary. 

Remark 4. 

If f is replaced by Pf in (5A.8) then, it will be seen below, the error is 0(e). 

Proof of Theorem 2. 

By a preliminary argument as in Theorem 1 we can show that it is enough to con- 

sider f = Pf if t > 0 i.e., we may drop the initial layers. 

Let 

(B/~2+A/c+C)t 
utt) = e Pf 

u--g(t) = e(PAP/~+V+PCP)t pf 
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We look for an expansion of the form 

c - e -¢ 2-2 
u = %% + ~V_A + C v 2 + ... 

with V~(t) ~d~2(t) to be determined so that 

5A. 15 
(B_..+ A _ ~ 2 2-c 
c2 ~+ C-~t)(u ~ - cV l- ~ v 2) = 0(~) 

From this and (SA.10) the result follows provided ~ and V 2 are bounded independently 

of ¢ . For this we use (SA.ll) as will be seen next. 

The left side of (5A.15) equals 

Now we choose 

- (B_+¢2 ~'A + C - ~)(ue~t * E:'~l * E:2V2) = 

1 -E: 

+ (B~ * A~ 1 + Cu~ - (V+PCP)u E - c , o(~) 

vl(t) = _ B-I(A-PA)~e(t) . 

With this choice and (5A.9) it follows that ~2(t) may be chosen (Fredholm alternative) 

as 

+ B-l(A-PA)PAPue(t) 1 ' 
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With these choices (5A.15) follows provided ua(t) is bounded independently by c as 

(SA.11) implies. The proof is complete. 

Let us finally remark that the above demonstration is given in a "mathematicians" 

form i.e. in the opposite order in which one first obtains such a result. The steps 

can be turned around easily, however. The reason that we have given these elementary 

results (in Linear Algebra, essentially) in detail here is that they have broader 

significance and, in fact, they are easily modified to produce all the results of 

section 2 as is done~ for example, in [21] . 

6. Coupled fluctuation equations 

The coupled power equations (4.3) derived in section 4 describe the solution for 

the average mode powers in the limit of section 2. For a given realization of the 

random fluctuation field w(r,z), however, the modal powers may exhibit behavior sub- 

stantially different from that of their statistical averages. Therefore, it is impor- 

tant to have some quantitative measure characterizing how far a given realization of 

power content in a mode deviates from its statistical average. Obviously, if one 

can solve (3.10) explicitly, one would have a complete probabilistic description of 

the modes as random functions of range (in the usual asymptotic limit). However, 

(3.10) is too difficult to solve explicitly and we only want information about power 

fluctuation. So we settle for the quantity 

6.1  < ~r ~T) > - [  e r (T ) c  r (~ )> ]  

r=l,2,.., ,N , 

in the limit c + 0 with T fixed. 

second moments of modal powers. 

we can then calculate (6.1). 

Define U (T) by 
rs 

In this section we shall derive equations for 

Using these coupled fluctuation _equations and (~. 3) 
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6.2 

= I Cr r s sc*c c* P (T,c,c*;Co,C~)dcdc* 

Using (3.i0) and (3.12) we derive, as in section 4, the following equations for Urs(T). 

6.3 
dUrr(~) N 

dT = - 2brUr(T) + 2 ~ arp[2Urp - Urr ] , 
p=l 
p#r 

r=l,2,... ,N , 

dUs (T) N 
=- +2a ]%s + ~ %(us-us) dT [br + bs rs 

p=l 

N 

aps(Urp - Urs) , 
p=l 

i < r,s < N , r # s 

Us(O) = Ioo=12 leosl 2 I <r,s <N. 

Here a and b are defined by (4.4) and (4.5). 
Pq P 

Clearly the quantity of interest (6.1) is given by 

112 

where Wr(T) satisfies (4.3). Thus, it suffices to solve (6.3). 

To gain some insight into the structure of the equations (6.3) we shall consider 

some simple cases. 

For a single guided (trapped) mode (N=I) it is clear that 
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-2blT 
6.2 Ull(T) = e U n ( 0 )  = w~(~) 

where UI!(0) = l Col lh  . I n  t h i s  case,  t he  expected va lue  of t he  power i n  the  s i n g l e  

mode decays exponentially with range as the energy is scattered by the random inhomo- 

geneities and lost as radiation into the ocean floor. Note that the fluctuation 

(UII(T) - W~(T)) 1/2 = 0 i.e., the power decays to zero with probability one (cf. 

(3.21)). 

Let us also consider the case of two guided modes (N=2). For simplicity we shall 

assume that the radiation loss coefficients b I and b 2 are equal; b I = b 2 = b . Also, 

since al2 = a21 is the only coefficient that appears we shall call it a . Then, (6.3) 

becomes 

6.5 

d [UII 

Iu12 
L % 

=-2b 0 1 0 U12 

0 0 i]L% 

* a -h 1 

U22 ] 

The solution of (6.5) is: 

6.6  

Ul l (~ )  

Ul2(~) 

u22(~) 

-2bT 
e 

=--6-- 

[2+3e-2aT+e -6aT] [4_4e -6aT] [2_3e-2aT+e -6aT] 

[l_e -6aT ] [2.&e -6aT ] [l_e 6aT ] 

[2_3e-2aT+e -6aT] [h_he -6aT] [2+3e'2aT+e-6aT ] 

• 1 Ull(O) 
ul2(o) 

Note that Uij(r) T+~> 0 , as should be by (3.21). In the absence of radiation loss 

i.e., b=0 , we obtain 

6.T l 2 ico2t2)2 n =  Ul l (T )  = l i =  u22(~) = 2 ~ =  Ul2(~) = ~( lCol l  * 
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N 

Since Icopl 2 
p=l 

as T ÷ = it follows that 

6.8 iCo212 

Let us n e x t  consider the general case of N trapped modes in the absence of 

radiation losses. We observe that setting 

6.9 Urr = 2U s = constant 1 < r,s < N , r + s 

determines a critical point for (6.3) (with b I = b 2 = ... = b N = O) . This point is 

asymptotically stable if apq>0 , p ~ q , and this implies that the constant is given 

by 

N 

2 =~llCorl2 6.10 ~ r 

which generalizes (6.7). 

From (6.10) and the equipartition result for Wr(T) it follows that 

Urr(~) ~s (~) 
6.11 lim -~, = 2 lim Wr(~)Ws(T) = 2 N+I ' 

l!r,s~N, r + s. 

Consequently, the normalized covarianee of the modal powers approaches the following 

limit as T ÷ 

Urs (x)-Wr (T)Ws (T) -i 
6.12 lim ..... = i < r,s < N, r + s . 



From this it follows that for N large the cross correlation among mode powers becomes 

relatively less important. 

Another consequence of (6.11) is the relation 

Urr (T)-Wr 2CT) N-I 
6.13 lira -- ÷ i as N ÷ ~ , 

T% ~ W2(T) N+I 
r 

which says that the relative fluctuations become large (=i) as N ÷ ~ 

We close this section by explaining why we feel it is important to study the 

dynamics of mode power exchange in the absence of radiation even though radiation 

losses are indeed a fact of life. It will become apparent in section 8, where a high 

frequency limit is taken (N ÷ ~) , that if the random fluctuations in the transverse 

or depth direction are not too severe, radiation loss is negligible for many of the 

lower order trapped (or guided) modes. Only the higher order modes whose transverse 

wavenumbers are close to the edge of the propagating wavenumber band will be able to 

couple energy into the radiating modes. Thus, energy initially imparted to the lower 

order modes must diffuse through the guided (or trapped) modes and migrate to the 

band edge before it can couple into the radiation spectrum. That is why it is impor- 

tant to understand the nonradiating case. 

7. Depth dependent quantities 

In this section we point out, very briefly, that information about mode power 

statistics can be used directly to obtain information about the pressure field. 

Consistent with the various approximations of section l, frc~ (1.12) and (1.16 

we have 

N iSr T/C2 

7.1 p(Tle2,z) = [ e Cr(Tle2)~)r(Z ) 
r =l 

2 

+ I k . .- l /h ei-,.":~ T/~: 2 c(~,~l~2)~(z,y)d~ 
0 
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We shall concentrate on that part of the pressure that is due to the trapped modes 

and set 

N iSr T/c2 

7.2 p(~) (T,Z) = ~ e c (C) (T)~r(Z) 
r=l ~ r 

7.3 

Clearly 

ip(~)(~,z)12 = N 
r,s=l /~rSs 

i(Br-Ss)T/c2 
e c(~)(T)c~)*CT)~r(Z)~sCz) . r 

If we choose A > 0 so that A is small compared to changes in Wr(T) of (h.3) but A/e 2 

is large while 8 r - 8 s is strictly positive for r # s , it follows that 

7.4 1 I T+A 
llm ~ <Ip(~)(o,z)12>dO = 

T 

[ ~l Wr(~)~(z) 
r = l  

The meaning of (7.4) is this. The ensemble average of the squared modulus of the 

pressure as a function of depth and range, smoothed in range by a moving average, 

behaves, in the limit of weak fluctuations mud long ranges, like the right hand side 

of (7.h) where W r is determined by (4.3) and Vr(t) are modes (cf. (1.7) - (1.10)). 

8. High frequency approximation to the coupled power equations 

In ([22S), Chernov uses a geometrical optics formulation to develop a ray dif- 

fusion equation for propagation in a random medium~ This equation, satisfied by the 

probability density function, is essentially the heat equation, where time and space 

are replaced by range and ray angle, respectively. This equation is very appealing 

to the intuition since we expect that a highly directional acoustic excitation would 

spread out or diffuse in angle as range increases due to scattering by the random 

inhomogeneities. This ray diffusion model has been applied to acoustic propagation 

in randomly inhomogeneous oceans by Weinberg and Mellin [23] , [24]. 
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The purpose of this section is to illustrate how one can arrive at a diffusion 

model by applying an appropriate limit to the stochastic framework and coupled power 

equations that we have derived. We are motivated and guided by the work of Gloge 

[25] and Marcuse EIT] , [26] in the area of electromagnetic propagation in optical 

fibers. For definiteness, we shall consider a representative model problem and de- 

termlne the behavior of the coupled power equations (4.6) in the limit where fre- 

quency (and thus the number of guided modes, N) increases. 

The model problem that we shall consider is the slab configuration shown in 

Figure 3. The average soundspeedis assumed to have the piecewise-constant form shown 

and we assume that the random soundspeed fluctuations are confined to the ocean region 

0 < z < d , i.e. ~(r,z) = 0 if z > d . For simplicity, we shall ass~e that the 

density of the medium is constant for 0 < z < ~ . Then, noting (1.4) and (1.5), we 

demand that the scaled acoustic pressure p(r,z) satisfy: 

8.1 ..... p + ~ + k2n2(z) p + ek2~(r,z)p = 0 
Sr 2 Sz 2 

p(r,o) = 0 

p(r,z) and~p(r,z) continuous across z = d 

where k = m/c o = 2~f/c o and the mean index of refraction n(z) is: 

8.2 

n(z) 

I nl > i , O< z < d 

i, z>d 

This problem is similar to that modelling the propagation of electromagnetic waves 

in a dielectric slab whose refractive index is randomly perturbed. In fact, the 

texts of Marcuse, [16] , [26] , provide an excellent reference for the present dis- 

cussion. 

We begin by deriving the mode functions. For the bound or guided modes, we must 
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solve the eigenvalue problem (c.f. (!.7)): 

2 8.3 d2 ".~p(z) + k2n2(z)x;p(z) = 8p%;p,(z) p=l,. ,N 
dz 2 ' •. 

~p(0) = o 

p dz 

0 

continuous across z = d. 

=l 

where n(z) is defined by (8.2). Define : 

#- 
p , p - Bp 

The eigenvalue equetion for ~p then becomes: 

8.5 

-O 
Op cos Gpd+ ~pSlnOpcl= 0 or tan qpd= 

P 
, k < 8p < nlk 

Notice that the number of guided modes, N, is determined by the number of solutions 

to (8.5) that exist within the range k < Sp < nlk • This integer N is, therefore, 

an increasing function of frequency or wavenumber. The eigenfunctions Vp(Z) have 

the form: 

8.6 

~(z) = Asin G z , 0 < z < d 
P P -- _ 

- ~p(z-a) 
Apsin ~pd e , d < z < 

w 

=~ +d i- d Ap K p 2ap 
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For the radiation modes, i.e. the mode functions corresponding to this continuous 

spectrum, we solve the transverse problem (c.f. (1.8)): 

8.7 

d 2 
v(y,z) + k2n2(z)v(y,z) -- y~)(y,z) , 0 < y < k 2 

dz 2 

v(7,o) = o 

d9 
~(y,z) and~ (7,z) continuous across z = d. 

~v(7,z)v*(X,z)dz = ~(7-X) 
0 

where 6(.) denotes the Dirac delta function. There is no eigenvalue relation assoc- 

iated with this problem. A continuum of solutions exist, one for each value of y in 

the range 0 K y < k 2 . We define: 

8.8 ~ ( ' c ) - ~  , n ( ' , ' > - / @ 2 - 7  , o<-, '<~2 

Then, the solutions of (8.7) have the form: 

8.9 

v(~,z) = 

A 

A y s i n  nz , 0 < z < d 

AT[sin ~d cos ~(z-d) + ~ cos qd sin ~(z-d)], 

~ [~(~2sin2nd + n2cos~d)] -I/2 , 0 < ~ _.< k 2 

d<z<~ 

There may, at this point, be some question about solutions (8.9); they do not corre- 

spond to intuition. Recall that these solutions are the radiation modes; a super- 

position of these modes can be used to represent energy lost by propagation into the 

ocean bottom. One would then quite naturally expect these mode functions to possess 

an outward, travelling wave structure in the region d < z < ~ . Instead, equations 

(8.9) indicate a standing wave structure in this region. In fact, the radiation 
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modes correspond to a plane wave excitation of the configuration at different inci- 

dence angles from z = =, i.e. from infinitely far in the ocean bottom. The resolu- 

tion of this difficulty lies in the fact that these modes are not physically meaning- 

ful individually. It is only a superpositlon of these modes that makes physical 

sense. The situation is somewhat analogous to that encountered in Fourier sine or 

cosine transform theory where finite energy signals are constructed via a superposition 

of these infinite energy, standing wave trigonometric functions. A good discussion 

of this point is given by Marcuse in [16] . 

We have alluded to the fact that an angle can be associated with the modes of 

the problem. This angular parametrization will now be made explicit. We introduce 

the angle e by defining the longitudinal and transverse wavenumbers to be: 

8.10 B ~ n!k cose , a ~ nlk sin8 

This parametrization is shown schematically in Figure 4. In Figure 4 we have also 

depicted an angle e o which is defined in a natural way by the "continuity of longitu- 

dinal wavenumber requirement across the interface. Since k < B < nlk , the angle 8 

ranges from 0 to a critical angle 8 c < w/2 defined by the relation: 

8.11 nlk cose c = k or e c = cos-l(1/nl ) 

From Figure 4, we observe that e = e c corresponds to 8 0 = 0 • Consequently, modes 

for which 0 < e < 8 c (i.e. k < B <inl k) are the bound or guided modes. The mode 

functions V can be viewed as a superposltlon of plane acoustic waves whose angle of 
P 

incidence e is too small to permit penetration into the bottom. Instead, these waves 

suffer total internal reflection at ,the ocean-bottom interface (z = d) . As (8.6) 

indicates, the acoustic field in the bottom region for these modes is exponentially 

decaying rather than propagating. 

Since we shall ultimately be interested in the behavior of the coupled power 

equations in the high frequency limit, we shall digress nov and examine the approxi- 

mate form of the guided mode function ~p (given by (8.6)) in the high frequency case. 
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Using (8.~), eigenvalue equation (8.5) can be recast as: 

Od 
P 8.12 tan Opd = - 

,~,hkd)2sin2ec-(~pd)2 

From this relation it follows that: 

- = ~Id 8.13 (~p+l op 

Moreover, for the lower order modes (i.e. %<<nlk sine c) we have: 

8.1h (~ ~ pn/d 
P 

Therefore, we can see from (8.6) that as frequency (or equivalently wave number k) 

increases, the mode functions of the low order guided modes take on the approximate 

form: 

8.15 ~p(z) = p~z 0 < z < d -~ sin d 

O~ d<Z< ~ 

Equation (8.15) is what one would intuitively expect. As frequency increases, the 

exponentially decaying field becomes more tightly bound to the slab. In the limit, 

the mode function satisfies a pressure-release boundary condition at z -- d also. 

Having developed the high frequency configuration of the guided mode functions, 

we shall now consider the random field ~(r,z) in greater detail. Thus far, we have 

assumed that ~ has an expected value of zero, is localized in depth to the region 

0 < z < d and has wide sense stationary matrix elements (c.f. (1.15) and (!.19)). 

In section 2 we have also mentioned a mixing hypothesis that must be satisfied by 

these matrix elements in order that the stochastic analysis apply. This hypothesis 

is tantamount to assuming that statistical independence is achieved in the asymptotic 
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limit as the range separ&tion becomes infinite. Now, however, we shall be more 

specific in our assumptions for the model problem since we want to explicitly evalu- 

ate the cosine transforms defining a and b in (4.4) and (4.5). Accordingly, we 
rp r 

shall assume that the random field ~ has the following correlation function: 

8.16 
e-lr-r'I/~ 

<~(r,z)~(r',z')> ~ R(z,z') K 

where the support of R is contained within [0,d]X[O,d] since B vanishes if z > d . 

This decomposition of R into the product of a transverse, depth-dependent correlation 

and an exponentlally-decaying function of range makes the cosine transform evaluation 

particularly simple. The assumption is, moreover, not as restrictive as it may, at 

first glance, appear since we could equally well deal with superpositions of the form 

M e-lr-r'l/~m 
Rm(Z,Z') K We choose as simple a form as possible to best illustrate 

m=l m 

the relevant features. 

From (1.19) and (8~16) it follows that: 

8.17 
(nlk)4e-r/£ Id /d 

<~q(r).pq(O)> = ~SpS~g ~(z,z' )vp(z)~q(z)vp(z' )vq(z' )dzdz' 
0 0 

(nlk)4e-r/9" [did 
J ~ ~(,,, )vp(~)~(~,,)~p(,.' )~(~,,.' )d-.d-.' 

where the mode functions ~p(Z) and v(y,z) are defined in (8.6) and (8.9) respectively. 

Let us use Ipq and Ip7 to denote the double integrals appearing in (8.17). Then, 

the coefficients a and b can be expressed as: 
Pq P 

8.18 
(nlk) 4 l q, 
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(nlk)4 2 bp 2~p I k I d~ 
~" o ~[l+(Bp -¢¥)2~2] 

Since both ~ (z) and 9(7,z) are sinusoidally-varying functions within the region 
P 

O < z < d (c.f. (8.6) and (8.9)), Ipq and Ipy involve spectral evaluations of the 

depth-dependent correlation function. In fact, if we define: 

2fF S(m,~') - ~ R(z,z')cosaz cosm'z'dzdz' 

0 0 

then I and I 
Pq P7 

as follows: 

can be expressed in terms of this two-dimensional cosine transform 

8.19 Ipq = ~ A2A 2p q Is (ap-Gq,Gp-Gq) + S(Gp+Oq,Gp+Oq) - S(Gp-~q,ap+~q) 

s(%~ ,Op~] 

Ap2A~ IS (ap-n ,qp-~ ) + S (Op+n ,Op+n ) - S (Op-0 ,op+n ) - Ipy = 

$(op+n,~p-n)] 

Having obtained this representation, we shall introduce a bandlimiting idealization, 

i.e. we shall assume that the support of S lles within a finite square of (~,a')-space. 

Theoretically, this assumption is impossible since we have already assumed that 

R(z,z' ) has compact support. However, if the ocean depth d is great enough and the 

random fluctuation ~ does not vary too rapidly as a function of the depth variable, 

this assumption is a reasonable approximation. 

We shall, for definiteness, assume that the support of S lles in the region 

[0,3~/2d]×[0,3~/2d] of wavenumber space. Recall from (8.13) that the transverse 

wavenumber increment for adjacent modes is (~p+l-Op ~ w/d. Our compact support 
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assumption, therefore, is tantamount to a "nearest neighbor interaction" assumption. 

With this assumption, (8.19) reduces to: 

8.20 Ipq = A2A 2 S (%-aq,~p-Gq) ~ p q  

0 , otherwise 

Ip-ql _< 1 

I 
PY 

A2.2 p~ s(n-~p,n-c;p) , 

0 , otherwise 

Moreover, from (8.13) we have: 

8.21 ip,p_l ~ Z._.W_2d 2 S(~/d,~/d) ~ 2d 2W So 

which is independent of the integer p . 

As a consequence of (8.18) and (8.20), the only nonzero a 
Pq 

ap,p_ 1 = ap_l, p . For brevit~ ~ , we define: 

coefficient is 

8.22 a = a 
p p,p=l = ap-l,p 

Then, equations (~.3) become: 

8.23 d ~?w I = _ blW 1 + a2(W2-W l) 

~--Wde P --bWp ~ +%÷~%÷i-%~- %% %-~,- 2 < p < ~-~_ _ 

We shall use A and 8 to denote froward and backward difference operators, respectively, 

i.e.: 
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Then, the general relation in (8.23) can be expressed as: 

d~ = -  ~ w  + %( , 2 _ < p _ < ~ - i  

Notice that in (8.25), we have simply rewritten unity as: 

8.26 Ap = (p+l)-p = 1 , Sp = p-(p-1) = 1 

From (8.1h), we note that the integer p can also be expressed as: 

nlkd 
8.27 p ~ $~p = ~ sinep 

For any given value of p, approximation (8.27) tends to equality as the wavenumber 

k becomes infinite. From (8.18) and (8.21) we have: 

8.28 a 
P 

(nlk) 2 (w/8) A2A 2 _S(G -G _ , G  . .~ 
P P - A  P p - A  p p - A  

= ecosepcose~ 1[l+(nl~)2(cosep-cosep 1 )2 ] 

Equation (8.27) implies that 8p-ep_ I 

(8.15), it follows that: 

= 0((nlkd)-l) as k ÷ ® • Therefore, noting 

~S 
8.29 ap = (nlk) 2 o + 0(1) 

hdecoS28p[l+ (~Z/ea) 2sin2ep ] 

as k ÷ ~. Therefore, if we use representation (8.27) for the finite differences 

Ap and ~p, i.e. 
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nlkd nlkd 
8.30 Ap =-7 (ainep+ I - sinep) , 6p = ~ (sinep - sinep_ l) 

we obtain a net factor (nlk) 2 in the denominator which is balanced by the in (8.2S) 

(n,k) 2- dependence of a 
P 

These observations point the way to the desired diffusion approximation. We 

shall define a continuous v~riable x as: 

d 8.31 x --~ sine , 0 < x < d sine -- x < d 
-- -- IT C C 17 

and view the coupled power equations as finite difference approximations to a partial 

differential equation of diffusion type defined in terms of independent variables T 

and x . Thus, we interpret %(T), bp and ap as sampled values of functions which we 

shall denote by W(T,x), b(x) and a(x), respectively. We can see from equation (8.30) 

that this interpretation is appropriate. As k + ~ , the number of guided modes, N, 

becomes infinite and the set of sampling points {Xp}p= 1 becomes dense in [0,x c] . We 

obtain the correspondence: 

8.32 ~p % ~  , 2_<p_<~-i > a(~) W<T,x) ,O_.<x<xo 

where 

8.33 a(x) 
~S 

0 

4d2[1- (~xld)2] [ l+(~12d)2(~xld)  2 ] 

Moreover, if the range correlation length ~ is much less than the ocean depth d, i.e. 

~£/2d << 1 , then: 

8.3~ a(x) 

~S 
0 

~d2[1-(~x/d) 2 ] 

Lastly, if sin@ c << i , i.e. if n I is only slightly greater than one, then: 
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8.35 a(x) 
WS 
o = a(o) - a 

4d 2 o 

We now consider the radiation loss coefficient b for 2 < p < N-I. As (8.20) 
P 

indicates Ipy is proportional to S(~-ap,D-Gp) . However, from (8.8) and the fact 

that 0 < y < k 2 , it follows that: 

8.36 ~-Op --> K)2-k2 = nlk sinec - Gp = nlk(sinec - slnep) 

Consider now an arbitrary but fixed value of e , such that 0 < e < e , and let the 
c 

index vary appropriately so that lime = 8 . From (8.36), since sine - sine > 0 , 
k~ P c 

it follows that 

8.37 lim = 
k~ n-~p 

However, as a consequence of the band limiting assumption, S(~-gp,~-Gp) will be zero 

whenever l~-Gpl > 3w/2d . Therefore, for that particular value of e , the limiting 

value of the radiation loss term, -bpWp , is zero. Since the value of e was arbi- 

trary, we conclude that the continuous variable counterpart to (8.25) must be: 

] o ~-~ , x < x c 

Because of the bandlimlting assumption, coupling to radiation will occur only 

for modes whose angle e is essentially the clrtical angle. Energy initially possessed 

by a mode whose transverse wavenumber is appreciably less than nlk sine c can not he 

converted directly to radiation loss. Rather, this energy must first diffuse among 

the guided modes. Only when this energy is finally coupled to a mode near the edge 

of the band (i.e. p ~ N) can this energy subsequently be coupled to the continuous 

spectrum and be lost. Therefore, as (8.38) indicates, radiation effects are absent 

from the description of the limiting interior coupling mechanism. As we shall see, 

however, the presence of radiation loss will play an important role in defining the 

boundary condition at x = x 
c 
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To obtain the boundary conditions at x = 0 and x = x c , we shall examine the 

finite difference equations for p = 1 and p = N , respectively. Recall that for 

the (nlk) 2- dependence of ap was balanced by a similar growth arising 2~p !~-i 

from the Ap and 6p terms (c.f. (8.29) and (8.30)). For p=l and p=N , however, such 

a balance will not exist, The identification of these equations as finite difference 

approximants to continuous variable equations will produce terms that become infinite 

as k + ~ . We shall obtain the boundary conditions by suppressing this growth, i.e. 

by demanding that the coefficients of these terms that grow with wavenumber be zero. 

Let us first consider the equation for p=l and deduce the boundary condition for 

x = 0 . The radiation loss term, -blW 1 , will clearly not play a role. Therefore, 

from (8.23), we see that we must consider the equation: 

8.39 dWI(T ) = a2(W2(T ) -WI(T))= p p Ip= 2 

From (8.27) and (8.31), however, observe that: 

8.bo d 
x_ ~ = ~ sine 2 = 2/nlk $ 0 as k + @ 

Therefore, the continuous variable counterpart of (8.39) is: 

Since a ~ 0 , we require that: 
o 

8.42 ~--w(T,o) = 0 
Sx 

The boundary condition at x = x c is obtained in a similar way~ the situation 

is complicated somewhat, however, by the fact that the radiation term now plays a 

significant role. From (8.23), the equation that we consider is: 
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8.~3 ~(~) :-b~W~(T) - ~(W~(~) -W~_z(~)) 

Observe that : 

d 
8.4h x N = ~sine N = nlN'k , + x c -~sine c as k + 

Therefore, we obtain the correspondence : 

8.~5 aN(WN(T)-WN_I(T)) : ap ~p Wp(T)Ip=N • -~ ( n l k )  a(xN)8~x--~(T,x N) + 

o(z ) - ->  (nz~) ~ (~ )  ~xW(T,xc) + o( l )  a8 k + 

Let us now consider the radiation term, - bNWN(T). From (8.18) we have: 

(nlk)4 k 2 INyd ~ 

8.~6 b N = 2S N f ,&.[z+(B_~12~2] 
0 

where IN7 is given1~y (8.20). Using (8.9) we have: 

(nZk)  fZ k 
nlksine c 

~n8 (n--ON,ri--o" N ) an 

where ~ and n are defined by (8.8). Because of the bandlimiting assumption, the 

actual (nonzero) range of integration extends from nlk sin8 c - Tic to ~c + 3~/2d . 

We are interested in determining the asymptotic behavior of b N as k ÷ =. Therefore, 

we observe that for n c < 11 < ~c + 3~/2d , the term (SN-~) 2 remains 0(i) since 

B N and ~ are both equal to nlk cos8 c + 0(I) . Therefore, to simplify our computa- 

tions, we shall e~sume that the spectral density function is flat over the range of 

integration end equal to the constant S (c.f. (8.21)). With these simplifications, 
o 

(8.~7) becomes : 
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8.~8 b N 
(nlk)2So [n 
4dcos28 

c qC 

where we have used the fact that ~ = 2~ ~Ud the approximation ~ = 2/d. Define 

$ = (q-qc)d. Then, (8.48) becomes: 

8.~9 
(nlk)2So 

b N ~ hd2cos2@c 

2 . . . . . .  [3~/2 ~v~ d~ 
%d ~o %-~-# ~+cos2(*% d) 

,I c 

To exhibit the frequency dependence of the integral it suffices to assume that 

coS(So + qc d) = 0 for one value of So lying in (0,3~/2) ; the argument for two zeros 

or endpoint zeros is basically the same. Choosing a small, fixed value of 8 • 0 , 

we have : 

So-6+ I I "37r/2 ~ d~ 
8.5o J ~ < ~ 3~ 3 /~c ,c~¢ -_ o{~) ~s ~ ~, = 

0 @o+O qc ~ c 

and 

8.~! ~o ~- (¢);c°s2(~+% a) " ~ -a (2/%d)So*~* 2 

= ~cd¢o tan -I 8 2 

From (8.49)-(8.51), we conclude that b N ~ (nlk)2 as k ÷ = . Since our simplifying 

assumptions did not qualitatively alter matters, we expect that such an order of 

~rowth prevails in the general case also. 
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For convenience, we define: 

8.52 b N ~ (nlk) b(k), where lim b(k) = 
k÷m 

Then, the contlnuous-variable counterpart of (8.43) becomes: 

8 wCT,XN ) -- _(nlk) [b(k)W(T,XN) + a(XN ) ~x W(T'XN)] + 0(1) 8.53 

Recall that x N ÷ x c as k ÷ ~ Therefore, guided by the ansatz of suppressing growth 

as k ÷ = , we obtain the following boundary condition at x = x : 
o 

8.54 b(k)W(T'Xc) + a(xc) ~x W(T'Xc) = 0 

Thus, we have a frequency-dependent boundary condition of impedance type. This 

boundary condition is intuitively very appealing. Notice that if radiation effects 

were not present, i.e. b(k) = 0 , then the boundary condition would reduce to one of 

W(T,X c) = 0 since a(x c) ~ 0 This condition, together reflecting type, i.e. ~x ' " 

with (8.42) and equation (8.38), would imply a conservation of energy in the contin- 

uous variable case since: 

x x 
d fo 
-- w(T,~)ax = -ff a(x) w(~,x) 
dT 0 

0 

w(T,Xc) ax = a(x c) ~ix 

a(O) ~ w(T,o) = o 

In the presence of radiation loss, since b(k) ÷ ~ as k ÷ = , we see that boundary 

condition (8.5h) becomes increasingly absorptive as wavenumber increases. In the 

limit k -- ~ , (8.54) reduces to the absorptive boundary condition W(T,x c) = 0 . 

In summary, then, we restate the limiting continuous variable diffusion approxl- 

mat i on. 
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~x ~x ' =d 8.56 ~W(T,X) = a(x) (T,x) 0 < x < x c ~ sine c 

~----W(T,0)Bx = 0 , b(~)W(z,x c) + a(Xc)~xW(T,x c) = 0 

To complete the specification of initial-boundary value problem (8.56), initial data, 

i.e. W(0,x) H Wo(X) , must be given. We obtain the initial data by viewing the ini- 

tial conditions of discrete system (8.23), i.e. {Wp(0)}~= I , as sampled values at 

x = xp of the limiting function that we have called Wo(X) - 

Note that if approximation (8.35) is applicable, we obtain the following explicit 

solution of (8.56): 

-a ~2T 
8.57 w(~,x) = [ Ae o n cosX x 

n=l n n 

where the eigenvalue equation is: 

8.58 b(k) cOS~nX c = ~na(Xc)SinlnX c , n=l,2 .... 

and the coefficient A is given by: 
n 

x 

I Cwo(X)COSlnXdX 

8.59 A ~ 0 , n=l, 2,... 

n fx c coS2~nXd x 

0 

Appendix A. N~erlcal study 

In this section we present the results of a numerical study conducted to compare 

the coupled power equations of section ~ with the high frequency diffusion model de- 

veloped in section 8. A comparison is made in the two cases where radiation loss is 

both absent and present. 
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For simplicity, we have adopted the assumptions that lead to approximations 

(8.35). Consequently, we assume a nearest-neighbor interaction among the bound modes 

with ap,p_ I ~ ap = (nlk)2ao ; p=l,...,N . Also, radiation loss, when present, is 

assumed to occur through coupling between the N th bound mode and the continuous spec- 

= (nlkla trum; thus, bp 0 , i ~ p ~N-I and b N ~ 8a c where 8 is some positive constant. 

Therefore, if we define the independent variable ~ H (nlk)2acT , the coupled power 

equations become: 

d 
8A.I ~W 1 " W 2 - W 1 

d 
+%-1 , 2 < p < N - I _  -- 

w. - -(S÷1)w~ ÷ w~_ 1 

For the case of no radiation loss, we Simply set 8 = 0 . 

We compare discrete system (8A.I) with the solutions of the diffusion equation: 

~2 
8A.2 ~---W(v,x) = a --W(T,x) • > 0 ; 0 < x < x c ~T o ~x2 ' -- -- -- 

subject to the boundary conditions: 

8A. 3a ~"-~-W(T,0) = 0 ~W(T,x c) = 0 (no radiation loss) 
~x ' ~x 

8A.~ ~ W(~,0) = 0 W(~ 0 ~-~ , ,x c) -- (radiation loss ) 

Observe that, for simplicity, we have adopted the limiting absorptive boundary con- 

dition for the case where radiation loss is present. Let y H x/x c and recall that 

x c N/nlk) (c.f. (8.27) and (8.31)). The solutions to (8A.2) with boundary condi- 

tions (SA. Ba) and (8A. Fo) can be expressed as: 
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T 
8A.ha W = ~ A e cos n~ , (no radiation loss) 

n=O n 

_((n+l/2)~/N)2 ~ 
8A. 4b W = B e cos(n+ll2)~ , (radiation loss) 

n= 0 n 

where A and B represent the appropriate Fourier coefficients and 0 < y < i . (For 
n n 

simplicity, we shall use the notation W(~,y).). 

The initial conditions that were adopted correspond to an initial excitation of 

the lowest order mode; thus, for (8A.I) we assumed that: 

8A.5 Wl(0) = 1 ; %(0) = 0 , p--2 ..... N 

For the diffusion approximation (8A.2), (8A. 3) we have adopted initial conditions 

8A.6 W(0,y) = ~(y) 

SO that "0 ,Y)dM =p[=l (0) = 1 . With that choice of initial condition, the 

Fourier coefficients in (8A.4) become: 

A O = 2 , n = 0,1,2,... 8A.7 = 1 , A n = 2 , n = 1,2,... ; B n 

The numerical study was conducted for a i0 mode case, i.e. N = i0 . Equations 

(8A.1), with initial condition (SA.), were integrated numerically to ~ = 50, with B 

set equal to 0 and 1 in the respective cases of no radiation and radiation loss. 

These results were compared with the diffusion approximation solutions, where the 

infinite series was found to be adequately approximated by the stun of the first 5 

terms, (i.e. n = 0,... ,4). Moreover, we have used the approximation: 

8A. 8 I 1 w(~,(p-ll2)IN) pIN w(~;,(p-ll2)l~) ~ ~, 

(p-l)IN 
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Figure 3. Modal Power vs. Normalized Transverse Waventnmber; i0 Mode Case. 

The points described under captions (i) below represent plots of modal power 

computed using the coupled power equations. The results obtained using a separation 

of variables solution of the diffusion approximation are described under captions 

(ii); these latter points are connected by dashed and solid line segments. Note that 

the coupled power equations and the diffusion approximation generate virtually 

indistinguishable results. 
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in the comparison of the diffusion approximation solutions with the modal powers, 

~(~), p=l .... ,N. 

The results are presented in Figure 3. In this figure, the values of N-1W(~, 

(p-1/2)/N) are plotted at ordinate values yp = (p-1/2)/N , p=l,... ,N and these values 

are linearly interpolated by dashed and solid lines. The values of Wp(~) , p=l,... ,N, 

are also plotted at ordinate values yp . The values of ~ used are . 5~ 5 and 50. For 

the case of radiation loss, only the ~ = 50 results are plotted since the data for 

= .5 and 5 essentially coincides with the results presented for the no radiation 

case. 

For the case considered, the continuous variable approximation developed in 

section 8 provides a good approximation to the system of coupled power equations 

(8A.1). As ~ increases, the highly-peaked initial power distribution flattens out as 

energy diffuses into the higher order (initially unexcited) modes. Until an appreci- 

able amount of power becomes coupled into the N th mode, the effect of radiation loss 

is negligible. Therefore, the data for ~ = .5 and 5 is insensitive to the presence 

of the radiation loss term. At ~ = 50, however, there is a substantial difference 

between the two cases. In the absence of radiation loss, the power distribution has 

essentially reached the limiting equipartitioned state. In the presence of radiation 

loss, the power distribution tapers to 0 as the band edge is approached. There is 

also a substantial reduction in the total power due to radiation loss. A comparison 

of curves (c) and (d) indicates that at ~ = 50 more than half the initial energy has 

been radiated. 

In Figure 4 we show the results of numerically integrating (6.3) with N = l0 

under the same hypotheses introduced above. We do not have, at present, a high fre- 

quency approximation for second moments of modal powers as we do for first moments. 

Appendix B. Diffusion approximation for coupled power equations with radiation loss 

In this Appendix we shall analyze the system of equatiors 

8B. i 
d~(T) 
d~ : ~2(~(~), ~(~)) 
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Fi~ttre h. Second Moments of the Modal Powers vs. Normalized Transverse Wavenumber; 

i0 Mode Case. 

In this figure only results corresponding to the coupled fluctuation equations 

are plotted. The points are connected by dashed and solid line segments simply to 

facilitate interpretation. No analog of the diffusion approximation has been 

developed for the second moments, 
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where f ( x ) ,  0 5 x 5 1 , i s  a smooth function with compact support i n  [0,1] , i n  t he  

limit as N + . We sha l l  show tha t  #(TI behaves, asymptotically for  N , l i k e  
P 

uN(~,$) , p = OJ.2,. . . ,N , where, 

N Note t h a t ,  i n  t u rn ,  u ( t , x )  of (8~.2) behaves asymptotically l i k e  u(T,x) which 

i s  the  solution of (8E1.2) except t h a t  

ins tead  of the  N-dependent impedance boundary condition. As explained i n  section 8 ,  

it i s  preferable t o  work with ( B B . ~ )  because it shows dependence on the  parameter 8 

and, also ,  provides a be t t e r  approximation. 

We now proceed with the  demonstration of t he  asymptotic approximation of (8B.1) 

N by (8B.2). F i r s t  we note t h a t  u (r ,x)  is a smooth function of x E C O , ~ ]  , since the  

da ta  i s  smooth, and derivst ives are  bounded independently of N . Let 
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N p 8B.4 ~p(T) = ~p(T)- U (r,~) . 

From (8B.I) it follows that 

8B. 5 0 
dr 

2 N 1 uN(T,0)) -N (u (r,~)- 

8B. 6 
dUN(T) 

P 
dr -1 N2(U~p+I(T) _ 2U;p(r) + U~p_l(T)) 

N 2 
Bu (T, N) 

BT 
i f_N/ ~+i~ P N, p-l~ 
2 N2~u~r' N . - 2uH(r,~) * u ~, N ~ l<p<N-1, 

8B.7 d~N(r)-dT N2(-(I+B)~N (T) + ~N-1 (T)) 

= ~u~(T'l) - N2(-(I+S)uN(~,I) ÷ uN(T~)) • > 0 
ST ' ' ' 

~p(0) = 0 , p = 0,1,2,... ,N . 

We shall snow that the right hand sides of (8B.5), (8B.6) and (8B.7) are 0(l) . 

Since T is in a finite interval, the maximum principle T for (8B.1) tells us that 

~p(T) = 0(~) , p=0,1,2 ..... N and the result follows. 

Expanding the right hand side of (8B.5) we have 

T 
Equation (8B.I) is, of course, the backward equation for a random walk on the posi- 

tive integers with boundary condition. 
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2 N 1 DuN (T,0) (u (~q) - uN(~,O)) -~-F- 

auNfT 0~ 

= o(~) , 

where we use the boundary condition and the equation (8B.2). Similarly, expanding 

the right hand side of (8B.6) and using the equation (8B.2) we find that it is also 

1 0(~) . Finally, expanding the right hand side of (8B.7) we obtain 

~2(-(l*S)u~(~,l) + u~(T,l) - U(T,l~ ~. ~l U ~xx(~,l)~)~ 

-- - N2(SuN(~,I) + F ~ ~ - + o(~) 

= o(~). 

Here again we use the boundary condition at x = 1 and the equation (8B.2). 

We have then shown that for any finite T (.fixed) 

8~.8 (T) - u~(Tq)l : o( ) , p = o,i ..... ~, 

as was intended. 

Let us remark that (SB.1) and (8B°2) have been scaled a bit differently than 

the coupled power equations of section 8 (cf. 8A.1). The differences are not essen- 

tial however and can be eliminated by changes of variables. In their form (8B.1), 

the coupled power equations admit the error estimate (8B.8) which is best possible. 
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CHAPTER V 

THE PARABOLIC APPROXIMATION METHOD 

Fred D. Tappert 

Courant Institute of Mathematical Sciences 
New York University 
251 Mercer Street 
New York, NY lO012 

I. Basic concepts 

The propagation of acoustic signals in the ocean to long ranges is made possible 

by the existence of the SOFAR sound channel which acts like a waveguide that confines 

the acoustic waves within the water column and prevents their interaction with the 

ocean bottom,which is generally quite lossy compared to the water itself. The para- 

bolic approximation methods discussed in this article are based on the geometrical 

configurations that naturally arise in the sound channel mode of propagation. By 

long range propagation we mean propagation to distances of a convergence zone or 

greater, the convergence zone spacing being about 30 to 35 nmi (i nmi = i nautical 

mile = 6076.1 ft = 1852 m) or about 50 to 60 km. Since the ocean is about 4 to 5 km 

deep, we see that sound channel propagation is mainly in a wavegulde that is relativ- 

ely thin vertically and greatly elongated horizontally [31-BBJ. It is this 

particular configuration that makes possible the parabolic approximation. 

Thus the parabolic approximation in underwater acoustics is quite distinct from 

the two other main classes of approximations that are commonly used. Geometrical 

acoustics methods are based on the approximation that wavelengths are small enough so 
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that diffraction effects are negligible everywhere except possibly in a few small 

regions, and separation of variables methods (such as normal mode expansions) are 

based on the approximation that the ocean is exactly stratified horizontally so that 

coupling between the waveguide modes is negligible. Parabolic approximation methods 

retain all the diffraction effects associated with the particular geometry of the 

ocean sound channel and thus are valid to much lower frequencies than geometrical 

acoustics, and they retain the full coupling between waveguide modes and thus are 

valid for more realistic, non-stratlfied oceans than separation of variables. 

Another important oceanographic fact that is needed in the following discussion 

is that long-range propagation is necessarily low-frequency, usually below 500 Hz or 

so. This is because volume absorption of acoustic waves in sea water increases rap- 

idly above about 1000 Hz and because the spectrum of ambient noise often has a broad 

minimum in the range between l0 and a few hundred H~. A typical frequency of interest 

is thus about 150 Hz and the corresponding wavelength is about l0 m. The wavelength 

is very small compared to the width of the sound channel (about 2 ~n) and many modes 

will propagate [31-3B]. 

To make these ideas somewhat more quantitative, let us temporarily adopt the 

geometrical acoustics and stratified ocean points of view (which are good for 

making rough estimates) and assume that all bottom interacting rays are attent~ted 

rapidly enough so that they don't contribute to long range propagation. The maxi- 

mum angle of propagation, also called the "limiting angle", is then given by Snell's 

law am 

84 cos -I (2AC/Co)1/2 = (emi n /Cma x ) ~ 

where e is the angle of propagation with respect to horizontal, Cmi n is the minimum 

sound speed (at the axis of the so~und channel), Cma x is the maximum sound speed (at 

the bottom of the ocean), Ac = Cma x - Cmi n , and e ° is some average sound speed. 

Typically, c o = 1500 m/sec, Ac/c o ~< .04, and thus e£ ~< 16 °. The largest angles of 

interest in long-range propagation are therefore rather small, and this fact sets 

the stage for the parabolic approximation. 
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Actually, most of the energy in sound channel propagation lies within a vertical 

sector of angles having a half-width of about 5 ° and this kind of propagation can be 

viewed as resulting from a sequence of thin lenses as shown in Fig. 1. The effective 

aperture is 2B = 4 km, the focal length is R = 25k m, and the focusing angle is 

e ~ B/R ~ .08tad = 5 ° • The f-number of such lenses is large, f = R/2B ~ 6, and the 

Fresnel number, F = koB2/R = 2~B2Ao R ~ lO0 at 150 Hz, is also very large. 

Although the focusing properties of the ocean sound chaunel are highly imper- 

fect and full of aberrations, it is clear that an approximation based on weak focus- 

ing (large f-number) and the Fresnel theory of diffraction should be adequate. 

The basic idea of the continuous Fresnel approximation can be seen in the uni- 

form ocean Green's function expression, 

1 iko[r2+(z-zs )2]1/2 

l.l p = [r2+(Z_Zs)2]i/~ e 

where z is the source depth. If the angle with respect to horizontal is small, 
S 

i.e., 

181 ~ IZ-Zsl / r << 1 , 

then we may use the approximation 

1.2a 

i. 2b 

ikor 
p = ~(z,r) --~ e 

Wr 

~(z,r) =~r eik°(z-zs)2/2r 

It is readily verified that ~ satisfies the parabolic wave equation 
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Figure i. Schematic diagram of weak focusing conditions in the ocean. 
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Figure 2. Definition of cylindrical coordinate system. 
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This is the most simple example of a parabolic approximation. 

Returning to the real ocean problem, elementary physical optics enables one to 

conclude that in a neighborhood of a focus (convergence zone) the intensity of the 

acoustic signal will vary significantly over a vertical distance Az ~ lof/~ and a 

horizontal distance Ar = kof2/w , where 1 ° = Co/~ = co/2~, and ~ is the acoustic 

frequency. Since f >> 1 , we see that the acoustic field varies very slowly on the 

scale of a wavelength and this fact suggests that we use an approximation in which the 

field is represented by a slowly varying envelope with the envelope varying more 

slowly in range than in depth. Such approximations arise elsewhere in physics and 

are called parabolic approximations (see Appendix A for an historical discussion). 

The most familiar example of a parabolic approximation is that used to describe 

the slowly varying temporal envelope of a wave packet, or sonar pulse. Denoting the 

wavenumber as a function of frequency by k(~), the integral representation of a wave 

packet is 

u(r,t) = ~ A(~) exp[i(k(m)r-ayt)]dm , 

0 

where A(~) is the distribution of frequencies. Assuming that this distribution is 

strongly peaked about the carrier frequency ~o (narrow bandwidth), we may expand 

k ( ~ )  , 

dk + ½(~_~o)2 d~ 
k(~) ~ k(%) + (~o) ~o ~--r , 

o 

retaining terms through quadratic (parabolic approximation). (1.2) becomes 
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I. 5a u(r,t) ~ $(r,t) exp[i(k(~o)r-~ot)] , 

where 

~ i~ 2 dZk 1 .Sb  t ~ ( r , t )  = A ( ~ o +  ~)  e x p ~ l t ~ ( ~ r - t ) "  + 2 - ] d~ . 
0 o d~o 2 

Direct differentiation of (1.5) shows that the envelope function ~ satisfies 

the parabolic equation 

1.6 
Vg ~t 2 ' 

= o- ' = ~o dvg/dk . where dt0/dk 8 -d~/d = v -3 Of course v is the Vg group velocity, 
g g 

and 8 is known as the index of dispersion. As we shall see later, (1.6) also 

describes the dispersive spreading of acoustic wave packets in a single mode of the 

ocean sound channel. If the pulse is initially gaussian and given by 

1.7 ~(t,o) = Po exp(-t2/2To 2) ' 

then at range r the pulse will have width T given by the relation 

1.8 
_~2 2 .  2 

T 2 = T 2 + E~ r /T O 0 
o 

This formula will be used later. For now, the main feature to notice is that the 

parabolic approximation is not concerned with the asymptotic limits r ÷ ~ or 
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~o ÷ ~ as in stationary phase approximations, but is instead concerned with the limit 

A~/~ o ÷ o , where A~ ~ 1/T ° is the bandwidth of the function A(m) . Thus the descrip- 

tive phrases, "narrow band approximation", "slowly varying envelope approximation", 

and "parabolic approximation" are all synonymous. 

Returning to the problem of sound channel propagation, we shall make use of a 

"narrow band of angles approximation" to derive a parabolic equation for the acoustic 

field by following an analogous procedure. We shall deal with the case of a stratified 

ocean here to clarify the main ideas, and later in Section 2 will derive the parabolic 

equations for more realistic oceans. It is well known that the acoustic pressure due 

to a source of frequency ~ can be represented by a sum of propagating normal modes 

at distance kor >> 1 in the form: 

M i (kmr-@t) 
1.9 p(~,r) = ~ A W(,) 1 

m=l (kmr)i/2 e , 

where the W are eigenfunctions of the "depth equation", 
m 

d2W 
.. m + [k2n2(z) _ ~]Wm = 0 , i.I0 
dz 2 o 

k ° = u/c ° , n(z) = colc(z) , and the km are elgenvalues (and radial waven~bers). 

The acoustic index of refraction is n(z) , the sound speed is c(z) , and e ° is some 

particular value of the sound speed chosen for convenience. Since n(z) differs by 

only a small amount from nnity in the ocean, it is useful to introduce 

1.~ v(z) -- l-n2(z) 
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and 

= k (i-%) 1/2 . 
o 

Then (I.i0) becomes 

+ ~2 [~ -v(z)]w -- o 1.13 o 
dz 2 

Since Iv(z) I ~ .04 in the water column, it follows that also ICm[ ~ .0~ . Thus the 

allowed values of ~m lie in a narrow band and we may expand the expression on the 

right of (1.9). Retaining only the leading term in the exponent and neglecting a m 

in the coefficient yields 

1.14 
1 i(kor'~) 

p(z,r) ~ ~(z,r) ~ e 

a n d  

1.15 ~(z,r) -- 

k 
o 

M -i~- Sm r 
½ N(z  e 

m ~ l  

As before, we now differentiate (1.15) with respect to r and use (1.13) to obtain the 

parabolic wave equation, 

1.16 Bz ~-Yv(z)~ -- 0 . 
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This is the prototype equation of the parabolic approximation in unde2 water acoustics 

(see Appendix A for further discussion of past and current usage). 

Of course in this idealized example the parabolic approximation offers little 

advantage because the most effective way to solve (1.16) is to separate variables 

and one then returns to (1.15) and (1.13) and it is rather pointless to make any 

approximation at all. The real power of the parabolic equation method resides in its 

ability to handle the more realistic oceans that have horizontal variations of sound 

speed, water depth, etc. This example does, however, give some insight into the 

validity of the parabolic approximation in more general cases. 

It is clear that the approximation is better, the more narrow the spread of the 

~m' This depends largely on the source excitation functions A m. If only a single 

mode is excited, then one can choose c such that c = 0 for that mode and there is 
o m 

no error. If only a few modes are excited then one can estimate errors by examining 

the expansion 

ik r iko(1-£m)I/2r iko(l_~m - i_~2, m 8 m ;r 
1.17 e = e ~ e 

For each term in the sum, the first neglected term in the exponent gives rise to a 

phase error 

ko 2 r 
1.18 A¢ m = - ~-~m " 

More important is the relative phase error between two modes that are strongly ex- 

cited. Using the eigenvalue estimate obtained from a quadratic well of width B, 

em ~ m(Ac/co)l/2/koB' we find that 

IACm - ACm, I - (m 2 _ m'2)AC/Co(r/koB2), 
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Thus an optimistic limit of validity is 

1.19 r ~ < koB2/(AC/Co ) , 

for two adjacent modes. At i00 Hz, using B z ~km, Ac/c o = .04 , we obtain 

1.20 r < lOhkm • 

More generally, there will be a large number of modes excited and one cannot expect 

the parabolic approximation to be pointwlse accurate over the large range given by 

(1.20). Moreover, other neglected oceanographic factors (such as random sound speed 

fluctuations) will destroy the possibility of pointwise accurate predictions of 

acoustic fields long before the above limit. Typically, significant random point- 

to-point fluctuations are observed at ranges of a few convergence zones. Thus the 

most one can try for is that systematic errors be avoided at large ranges. 

Another point is that there are many parabolic approximations that are asymp- 

totically equivalent to (1.16), which we first rewrite as 

k o 1 32¢ + -~- [n2(z)-l]¢ = 0 
1.21 i ~Z~r ÷ 2k ° ~z 2 

Since the derivation of this equation required that In2-11 << i , it is clear that 

we may equally well replace ½(n2-1) by n-i to obtain 

1.22 i ~% ÷ ko[n(~)-l~ = 0 
i ~r + 2k ° 3z2 

Eq. (1.22) has the advantage over (1.21) that when there is no z dependence (unrealistic) 
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the phase agrees with the WEB expression. A disadvantage is that the eigenfunctions 

do not agree with the true eigenfunctions for a stratified ocean, as is the case for 

(1.21). Other possible equations asymptotically equivalent to (1.21) are obtained 

by replacing k ° by kon(Z) in the second term giving 

~2,,, % 2 1 + ~-[n (~ . ) - z ]¢  : o,  or  1.23a i ~-~ + 2kon-~-C~ ~z 2 

z ~2~ + k o [ n ( z ) - l N '  = O. 1.23b i ~ + ~on----~ B-- ~. 

The product kon(Z) does not depend on the choice of c o and may possibly be an advan- 

tage. However, since n must be close to unity for any of these equations to be a 

valid approximation, there is no theoretical reason to prefer any one of them over 

the many other possibilities. In section 3 we shall derive parabolic equations 

that are genuine improvements, and are not asymptotically equivalent to those given 

here. In any case, it is clear that there are many parabolic equations that can 

serve as useful approximations. The common element in all such equations is the 

slowly varying envelope and narrow band approximation. 

Since (1.21) is a wave equation, one can obtain a geometrical acoustics approx- 

imation directly from this equation. By comparing to the exact geometrical acoustics 

equation, one gains further insight into the nature of the parabolic approximation 

and one especially sees that it is a small angle approximation. For a horizontally 

stratified ocean, the exact ray equations are 

1.24 
d2z . . . .  1 d ,i 2, 

~2  s 

where s = n(z) cose = const. , and dz/dr = tan8 . The constant s is called 

Snell's invariant. 

Of the many ways to derive the corresponding ray equations from (1.21), we shall 

proceed by writing the envelope ~ in polar form in terms of a real amplitude and 
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phase: 

1.25 ~(z,r) = A(z,r)e i¢(z'r) 

Substituting (1.25) into (1.21), equating separately the real and imaginary parts to 

zero~ and defining 

1.26 e(z,r) = ~ Dz 
o 

yields the pair of equations: 

SA2 ~z ( 1.27a Dr + 9A2) = 0 , 

1.27b 
De Be 1 __ ) ~r + e ~_ ~ ~ 1 2 D 1 a2A 
- -- ( p  + D , 2  . 

o 

Eqs. (1.27) are exactly equivalent to (1.21), the last term on the right of (l.2Tb) 

describing diffractive effects. Geometrical acoustics is obtained by taking the 

formal limit k ÷ ~ , in which case this last term drops out. Eq. (1.27a) then 
o 

states that the acoustic power A 2 is transported along the characteristics, 

1 . 2 8 a  " ~  = e . 
d r  

Thus e is the (small) angle with respect to horizontal. Eq. (l.2Tb) becomes 



1.28b d8 d 1 2 --=~-~z~ (z)) dr 
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Combining these two equations gives an equation of the same form as (1.24) except 

that 

1.29 s=l. 

In order that s be near unity we need that n ~ 1 and 8 << 1 (recall that s = ncose). 

This gives a succinct statement of the conditions for the validity of the parabolic 

approximation, provided the acoustic frequency is high enough to Justify the use of 

ray equations. It may also be noted that for any specified ray, (1.28) can be made 

exactly equivalent to (1.2h) by a simple rescaling of the range variable: r = r'/s . 

However, this scaling depends on the ~ngle of emission of the ray so one cannot uni- 

formly rescale an entire family of rays. Thus the small angle condition is still 

necessary. 

The above geometrical acoustic analysis together with the preceedlng normal mode 

analysis sh~s the main reason why the development of small angle, or parabolic 

approximation methods arrived so late in the history of underwater acoustics. Namely, 

for stratified oceans this approximation has very little to offer because it does not 

lead to any significant simplification. The ray equations in the small angle approxi- 

mation have the same form as the exact equations, and the normal mode equations in 

the small angle approximation require the solution of the same eigenvalue problem as 

the exact equations. For range dependent environments, the situation is quite differ- 

ent. One no longer has Snell's Invariant, and instead of (1.2~) the exact ray equa- 

tions take a much more complicated form with several direction cosines that must be 

recomputed along each ray. In the small angle approximation~ however, one obtains 

a simple generalization of (1.28) : 



d2z = ~-~z ~2(z,r)] , 1.30 
d r  2 
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where now the index of refraction n depends on both z and r . Eq. (1.30) should be 

useful in numerical ray tracing studies Just as the corresponding parabolic wave 

equation has already proven its utility. 

Finally, it may be worthwhile noticing that the geometrical acoustics approxi- 

mation, Just like the parabolic approximation, has errors that accumulate with range. 

To estimate this error, let us neglect the other error associated with the small 

angle approximation and examine the error due solely to neglect of diffraction. The 

relative magnitude of the neglected term in (1.27b) is 

1 32A 1 1 
1.31 ~ ~ 

k2A 8z 2 k2(Az) 2 V ' 
o o 

where we have used the previously obtained estimate of the vertical scale of amplitude 

changes near convergence zones, and F is the Fresnel number, F = koB2/R . In one 

convergence zone period, the relative error in ray position is thus of order 

~ R2/k~B h , or about l0 -h at 150 Hz and l0 -2 at 15 Hz. This error also shows up F-2 

as a displacement of the focal plane of an ideal thin lens. Using the uniform medium 

parabolic equation, 

i. 32 ~2~ = o .  1 
i~+ 2k ° ~z 2 

with initial condition 

- (Z-Zs)2/2B 2 -iko (Z-Zs) 2/2R 
1.33 ~(z,o) = e e , 
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one easily calculates that the distence to the focal plane is R(I+R2/k2oB4) -I which 

is slightly less than the distance predicted by geometrical acoustics. Thus ray- 

trace predictions of the location of convergence zones are always slightly in error, 

the error becoming larger the greater the range and the lower the frequency. Parabolic 

approximations are therefore not unique in having errors that accumulate with range. 

The main features of the SOFAR sound channel that make possible long-range over- 

the-horizon ocean acoustic propagation have been outlined. Within a horizontal dis- 

tance from a low-frequency source equal to a few ocean depths, the acoustic energy 

propagating at angles greater than the bottom limiting angle is stripped away by 

lossy bottom interactions leaving only trapped waves propagating at small angles 

with respect to horizontal and giving rise to predominantly cyclindrical spreading. 

The natural approximation appropriate to this particular geometrical configuration 

was shown to be the small angle, narrow band, pars2oolic approximation. The discussion 

was centered around stratified oceaas, and (1.21) was shown to be the fundamental 

equation of the parabolic approximation method in this case. In the next section we 

shall derive a number of more general parabolic wave equations that extend the method 

to a greater variety of ocesaic environments. 

2. Derivations of Parabolic Esuations 

The preceding section dealt heuristically with the parabolic equation method in 

the overly idealized approximation of a horizontally stratified ocean. In this section 

we shall strengthen the foundations of the parabolic approximation by providing several 

alternative derivations and shall further extend the method to include horizontal 

variations of sound speed, volume absorption, ocean depth, as well as azimuthal 

(oceanic front ) effects, several time-dependent effects, and randomly fluctuating 

ocean effects. The emphasis will consistently be placed on the derivation of approx- 

imation model equations. It is understood that the problem of solving these equations 

for realistic ocean environments rightfully belongs,in this era of high-speed digital 

computers,to specialists in nzr~erical analysis and computer science. Let it suffice 

to say that parabolic wave equations have proven to he remarkably well ad~pted to 

efficient machine calculation. This is mainly because they belong to the "marching" 
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class of partial differential equations, i.e., algorithms can readily be devised for 

the solution of equations of the type of (1.3), (1.6), (1.16), (1.21), etc., in 

which the acoustic field is advanced one step at a time in range using only informa- 

tion about the field at previously computed ranges [58-62]. In addition, one solves 

for the slowly varying envelope function itself, and thus computations do not have to 

be done on the scale of wavelength. This makes feasible the numerical solution of 

underwater acoustic propagation problems that would be quite impossible with present 

generation computers if one had to solve directly the elliptic reduced wave equation 

or the hyperbolic acoustic wave equation. Thus the primary motivation behind para- 

bolic approximation methods is to make controlled reliable approximations right at 

the beginning of the analysis in order to obtain approximate equations which, even 

though they may not be analytically soluble themselves, are especially well adapted 

for efficient high-speed machine calculations. 

We shall begin with the case of a fixed monopole (point) source radiating a 

single frequency in an ocean whose acoustic index of refraction depends on the three 

spatial coordinates but not on time. We actually have in mind, of course, the situa- 

tion where the temporal variations of the ocean are so slow that we may neglect any 

changes of sound speed during the time it takes an acoustic signal to propagate from 

source to receiver. Thus the time t appears in the index of refraction as a parameter, 

but we shall not explicitly display this dependence. This approximation would apply, 

for exsmpie, to diurnal variations of acoustic velocity. Also, we shall at first 

neglect variations of the fluid density and later put this effect back into the model 

as an effective index of refraction. We shall use the cylindrical coordinate system 

shown i~ Fig. 2: z is the depth measured downward from the surface, r is the range 

measured horizontally, and $ is the azimuthal angle (bearing) measured from an arbi- 

trary reference direction. The governing equation is then the reduced wave equation 

for the acoustic pressure p: 

2.1a A~ + k~[n2(z,r,¢) ÷ i~(z,r,¢JJp = -h~o~(~) , 
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Ap = rTr r ~r ~z 2 r-~ ~¢2 ' 

2.1C 6(X) = ~(z-z s) ~ $(r) . 

Also, k ° = e/c ° , ~ is the angular acoustic frequency, n(z,r,¢)=Co/C(z,r,¢) , 

c o is a normalization sound speed, and ~(z,r,¢) is the volume absorption coefficient. 

The source strength is Po (the pressure at unit distance) and it is located at r = 0 

and depth z . One of the basic problems in underwater acoustics is to solve this 
s 

equation for the acoustic field p(z,r,¢) given the functions n and ~ , and subject to 

boundary conditions at the surface and bottom. 

Since, as will be seen, the parabolic approximation does not alter the surface 

or bottom boundary conditions, we do not need to dwell on this aspect of the problem. 

The surface boundary condition is the usual "pressure-release" condition 

p(~(r,¢),r,¢) = 0 , where ~(r,¢) is the displacement of the surface from the mean 

level z = 0 . The boundary condition at the bottom is more difficult to specify in 

mathematical terms because it depends on how much effort one is willing to spend on 

modeling propagation through the material layers underlying the ocean floor and on 

how much one believes these effects influence the acoustic signals at the desired 

range and location. Physically, the bottom often consists of deep layers (many 

wavelengths thick) of sediment which behaves acoustically llke a fluid with sound 

speed close to that of water but with much greater volume loss. Acoustic signals 

propagating at very steep angles may penetrate the sediment layers and then propagate 

through, and possibly be reflected by, layers of soft (limestone) or hard (granite 

or basalt) rock. In any case, waves that penetrate sufficiently deep into the sub- 

bottom layers do not return to the water with enough strength to contribute signifi- 

cantly to long-range propagation and should be removed from the calculation. This 

effect is modeled by making ~(z,r,$) increase rapidly for values of z much greater 

than the depth of the ocean and then cutting off the calculational domain at a depth 

where the acoustic field has been reduced to a negligible amplitude. 
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Since (2.1) is elliptic, we also have to give a boundary condition on some 

vertical boundary surrounding the source. This too is difficult to specify because 

the usual outgoing radiation condition does not apply to an ocean with horizontal 

variations. Here we encounter a feature of the parabolic approximation that did not 

arise in the discussion of the previous section, namely, that this approximation 

automatically eliminates backscattering and reverberation. That is, within the para- 

bolic approximation there is no coupling between outward and inward propagating waves 

so we do not need to be concerned with a boundary condition on a vertical surface. 

Although this simplifies the formulation of the acoustic model, it also leads to an 

additional error which one would sometimes like to avoid. We shall show later how a 

first order correction can be added to the parabolic equation method which allows the 

calculation of reverberation. 

Let us now proceed to derive the parabolic wave equation from (2.1). As dis- 

cussed in Section I, the main idea is that to leading order all significant acoustic 

waves in the ocean at low frequencies are propagating primarily in the horizontal 

direction away from the source, Thus the acoustic field maybe represented as an 

outgoing Hankel ftmction H~l)(kor) which is slowly modulated by an envelope function 

that depends on depth, range, and azimuth: 

2.2 (1) k r p(z,r,$) = $(z,r,$)H o ( o ) " 

This is expected to be a good approximation only in the far field of the point source 

where k r >> i and 
0 

2.3 ~(1)(k r) ~ (2/iSTkor)I/2e ik°r 
~0 0 

Substituting (2.2) into (2.1) and omitting the source term because (2.2) is not ex- 

pected to hold in the immediate neighborhood of the source, we obtain without further 

approximation: 
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~r 2 ~ + Dr ~z r 2 ~2 

+ k 2 [n2(z,r,$) -1 + ig(z,r,$) ]~ = 0 
0 

We now make the far field approximation, k r >> i , end note from (2.3) that 
O 

2.5 2 ~H~ I) 1 [i + 0(k2-- ~) ] 
÷ ° 

o o 

Neglecting the term of order (kor) -2 , we obtain 

2.6 
%r 2 Dr %z r 252 

We will leave aside for the moment the problem of connecting the solution of this 

e~uation to the field near the source (the source modeling problem), and continue 

with the main approximation needed to obtain the parabolic wave equation. The re- 

quired step is clearly to neglect the term 325/~r2 compared to the term 2ik ° ~/%r . 

The way has been prepared in Section 1 for this step end later in this section we 

shall further analyze the nature of the error committed in making this approximation. 

For now, it is enough to note that if the main radiLl dependence of the acoustic 

field is exp(ikor) for some choice of k ° , then the envelope ~ will vary Slowly as a 

function of r on the wavelength scale, i.e., 3~/~r << ko~ and the neglect of ~2~/~r2 

is Justified. Neglecting this term in (2.6) yields the fundamental equation of the 

parabolic equation method in underwater acoustics: 



24S 

° + =o 
~z 2 + r 2 252 + 

Once the field is specified at some range r, (2.7) can be solved as an "initial 

value problem" by advancing the solution outward in range. The boundary conditions 

in z were discussed earlier and the solution is periodic in the variable $ . Thus 

we have an acoustic model that allows for Variations in sound speed and volume ab- 

sorption in all three dimensions, and also allows for variable surface height and 

ocean depth. There are a variety of numerical schemes that provide rapid end accurate 

solutions to parabolic equations of the type (2.7). As discussed in Section i, the 

main sound channel will cause the envelope function $ to very on the vertical scale 

Az ~ Aof/~ and horizontal scale Ar ~ ~of2/~ , where ko = 2~/ko is the nominal acoustic 

wavelength and f = R/2B - 6 is %he typical f-number of the sound channel. How rapidly 

$ varies as a function of $ will depend on n and ~ . Also, rapid variations of n and 

(or the boundary conditions) will induce corresponding variations of $. It is al- 

most universally true that oceanic ~riations are much more gradual in the horizontal 

coordinates than in the vertical coordinate. Thus the resolution needed to solve 

(2.7) will be as stated above and is much longer than the wavelength scale. 

Other simplifications of (2.7) are also of considerable practical use. Far from 

the source, the curvature of the cylindrical w&vefronts cam be neglected and the azi- 

muthal coordinate in (2.7) can be replaced by a locally cartesian coordinate dy = rd$ 

to give 

2.8 

This equation is especially useful for calculations with relatively narrow beams, 

which are of interest in connection with horizontally extended receivers which select 

only a narrow band of directions, or for sources which have a directional radiation 

pattern. 
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The most widely used parabolic wave equation in underwater acoustics results 

from (2.7) when the azimuthal derivatives of ~ are neglected. This does not mean that 

the field is assumed to be cylindrically symmetric (which would be absurd for realis- 

tic ocean propagation to long ranges ), but rather that the variation of the ocean in 

azimuth is so gradual that we may neglect scattering from one azimuthal direction to 

another. We then obtain 

2.8 2ik o ~+ ~--~2 + ko2[n2(z,r)-l+i~(z,r)]~= 0 , 
3z 

where the dependence of n and ~ on ¢ has been suppressed Just as we earlier suppressed~ 

their actual dependence on time. In practical applications, one will of course choose 

the functions n and ~ (which also contain the information about bathymetry) to corre- 

spond to the particular bearing, time of day, season of year, etc., for which one 

wants to know the acoustic field. 

We now turn to the problem of source modeling, i.e., obtaining initial data for 

(2.8). There are many ways to get initial data, the best being to solve the full 

elliptic wave equation in a small region containing the source and extending out 

several wavelengths in r from the source to the region where the parabolic equation 

becomes valid. If the ocean can be assumed to be exactly stratified near the source, 

then this solution can be obtained by separation of variables and calculating the 

normal modes (including the continuous spectrum which can be important near the source). 

In many applications, however, this procedure is unnecessarily complicated and a much 

simpler prescription suffices. This is because one only cares about the energy that 

is injected into the sound channel and propagates to long ranges. If the source is 

several wavelengths from any boundary, then we know that near the point source the 

field will be a spherically spreading wave, 

Po ikoR 
2.9 p -- -~- e , 
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where R = [r2+(Z-Zs)2] I/2 , Assuming that this solution holds out to a range r such 

2.10 k -I << r << B , 
o 

where again B is the width of the sound channel (or roughly the scale length of the 

thermocline), then we know the field at a range where the parabolic approximation is 

valid but before any significant refraction effects have occured. In this "overlap" 

region, (2.8) becomes simply 

2. Ii 2iko ~+ ~ =  0 
~z 2 

and from (2.2) and (2.3) the pressure is 

2.12 p(r,z) ~ $(z,r) (2/iWkor)l/2eik°r . 

Comparing (2.12) to (2.9) and making small angle approximation, IZ-Zsl/r << I , 

second order, we see that in the region defined by (2.10) we want ~ to have the 

approximate form 

to 

2.13 

(Z-Zs)2 
$(z,r) = Po(iWko/2r)i/2 [i - ~ ~ ] 

r 

iko(Z-Zs)2/2r 
e 

This can be achieved by starting at r = 0 with a source extended vertically sad de- 

signed to produce the field in (2.13) when kor >> i . The simplest such source, and 

one which does not produce spurious sidelobes, is 

2.1h ~(z,o) = Ae-(Z'Zs )2/w2 , 



2,14a A = Poi~lw 

246  

2.14b w = J~Ik ° = ),oI~ . 

TO show this, we solve (2.11) with initial condition (2.14) to get 

2.15 

2 2  2 2 

0(z,r) = Po(i ko/2r)l/2 s -1/h e -kOw (Z-Zs) /4r s 

x e i [ko(Z-zsl2/2rs + ~ -  ~an'l(2r/koW2) ] 

and s -- m+k~w~/4r 2o_ . 
o 

and (2.15) becomes 

If kow = 0(i), then in the far field, kor >> i , we have s = i 

2.16 ~(z,r) = Po(i ko/2r)I/2 e-k~w2(z-zs )2/4r2 

iko(Z-Zs)2/2r 
×e 

Comparing this to (2.13), we see that the behavior is correct when z = Zs, the phase 

is correct, and the distribution of intensity in depth will be correct to second order 

in angle provided w is chosen according to (2.14b). This prescription has been found 

to work quite well in practice in the sense that near the source in the forward sector 

of angles, the intensity Ipl 2 decreases proportional to r "2 (and the transmission loss 

is 66.13 dB re 1 yd at r = 1 nmi), while at greater ranges one observes a general 

trend toward a r -1 decrease. 

Recalling that Po represents the pressure of the point source at unit distance, 

which we call r o , the conventional expression for transmission loss is 
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TL = IO io~0 [ Ip(~,r)Iz/(po/ro )2 ] 

2r 2 

= 1o 1O%o [ °-2 l~(~-,r)I 2 ] 
~korP o 

This expression is clearly independent of Po ' and insertion of the short-range field 

(2.13) shows that TL would vanish at r = r o if that formula held at such a short range. 

By convention, in the U. S. we usually take r = 1 yd. 
o 

Although one may always use the principle of linear superposition to compute 

acoustic fields from sources that are not point radiators by adding coherently many 

fields with sources as prescribed above, it is more convenient in practice to directly 

model the distribution of radiated acoustic energy from the actual source. Since 

these distributions are conventionally specified in terms of the far-field radiation 

patterns, and this is Just what is needed to begin the integration of the parabolic 

wave equation, we see that the parabolic equation method is readily adapted to handle 

a general class of sources (such as directional radiators, etc. ). It should also be 

mentioned here that in practical calculations one usually interchanges the source 

and receiver, making use of the principle of reciprocity. Thus, for examples if a 

source moves in range with respect to a fixed receiver and if the environment is 

range-dependent, one would naturally begin the calculation of acoustic fields at the 

receiver and march out in range toward the source, thereby avoiding the necessity for 

recomputing the field at each different range to the source. In addition, what was 

said above about modeling extended sources applies equally well to modeling extended 

receivers that have directional properties. 

As in other physical sciences, the ultimate validation of an underwater acoustic 

model must depend on comparisons to experimental data. Computer programs based on 

the "split-step Fourier" algorithm [35-40] have been implemented in several 

laboratories in order to obtain solutions of (2.8) and make comparisons to ex- 

perimental data. These tests have shown that the parabolic equation method 

performs at least as well as other models for low frequency, deep-ocean, long-range 
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acoustic propagation and sometimes does extraordinarily well, especially in strongly 

range-dependent environments where other models have great difficulty. 

Figures 3 and 4 show an example of such a comparison. The data in Fig. 3 was 

taken by T. Talpey in the North Pacific [633o The source was a calibrated sinusoidal 

projector with nominal frequency of 144 Hz towed at a depth of 280 ft. moving along 

a certain radial bearing from a fixed receiver at a depth of about 4290 ft. The data 

shows three convergence zone peaks at ranges of 34, 66, and 97 nmi (the last being 

split into two distinct sub-peaks); and also shows two lower more diffuse peaks at 

ranges of about 50 and 82 nmi. The diffuse peaks were interpreted as being caused 

by reflections from the ocean floor. The sound speed profiles and ocean depths were 

accurately measured along the track, and were used as input (together with assumed 

volume loss functions) to a computer code that solved (2.8) and calculated the 

transmission loss according to (2.17). This numerically calculated result is shown 

in Fig. 4 on the same scale as Fig. 3. The three convergence zone peaks are seen 

to be accurately predicted both in amplitude and range, as well as the secondary 

diffuse peaks which were confirmed to be caused by reflections from the multifaceted 

sloping ocean bottom. Discrepancies do appear in the shadow zone regions, but the 

transmission is so poor here that it has no practical consequences. The success 

of the parabolic equation method in this challenging example gives support to its 

usefulness and reliability in practical underwater acoustic problems. 

Of course, a much greater number of such comparisons in a variety of environ- 

mental conditions are needed to thoroughly validate this acoustic model and to deter- 

mine its range of validity. Admittedly, there are circumstances where this acoustic 

model has not performed as well as in the above example. For instance, the prediction 

of transmission via bottom reflected paths that do not lie in a vertical plane (due 

to tilted bottoms) clearly requires a three dimensional calculation. 

Another successful parabolic equation calculation is shown in Fig. 5, which is 

also concerned with acoustic propagation in the North Pacific Ocean. Along a meridian 

at about 170 ° W, the east-flowing Kuroshio Current (about 42 ° N) marks a separation 

between cold sub-arctic water and a more temperate body of water characterized by a 

double thermocline. Propagation across this oceanic front,which is about 625 nmi 

south from an assumed receiver,results in an enormous (40 dB) decrease in transmission, 
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as shown in the numerically computed transmission loss curve of Fig. 5 for a source 

at 300 ft. and frequency 50 Hz. The cause of this drop in transmission is clearly 

the "impedance mismatch" between the two different sound channels separated by the 

oceanic front. 

Next, we present some graphical computer plots of acoustic fields that were made 

for their pedagogical (and possibly artistic) value. In the first sequence~ Figs. 6 

to lO, the sound speed profile was taken to be bilinear in order to make the ray 

tracing easy to perform and to display the structure of caustics, shadow zones, and 

convergence zones in an idealized case. The gradient of sound speed, g = dc/dz (with 

z increasing downward from the surface at z = 0), is given by: g = - .04 sec -1 between 

0 and 4000 ft. (axis of the sound channel); and g = + .02 sec -I between 4000 ft. and 

16000 ft. (bottom of the ocean, assumed flat). The bottom layers were taken to be 

very lossy to eliminate bottom bounce paths and simplify the interpretation of the 

acoustic fields. The source (at left edge in all plots) is 2000 ft. deep and the 

horizontal scale extends to 80 nmi in all plots. Fig. 6 is a ray diagram of this 

case which was made by R. L. Holford [6~S. Cusped caustics can be seen at the con- 

vergence zones at the source depth (2000 ft.) and between the convergence zones at the 

reciprocal depth (8000 ft.) of the source. Sharply defined shadow zones are also seen. 

Solutions of the parabolic wave equation for the same case are depicted in Figs. 7 - 

lO at frequencies of 25, 50, 100, and 200 Hz, respectively, The upper plot shows 

detailed contour levels of acoustic intensity (I~I 2) in the range-depth plane. The 

lower plot is a smoothed and simplified version of the upper one. It shows two con- 

tour levels of Ipl 2 corresponding to transmission losses of 80 dB (re 1 yd) and 90 dB 

(re 1 yd). The regions where the transmission loss is greater than 90 dB or less 

than 80 dB are shaded, while the region between 80 and 90 dB is left white. These 

plots show clearly the complicated interference and diffraction effects that are 

fully described by the parabolic wave equation but absent in ordinary ray training. 

To extend the geometrical acoustic approximation to take into account all of these 

effects would not appear to be a very practical approach, although it must be admitted 

that at the higher frequencies (200 Hz) the isolated caustics occurring at the first 

convergence zone may be adequately handled by such methods in this idealized case. 
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Figure 7. Bilinear profile, parabolic equation, 25 Hz. 
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Figure 8. Bilinear profile, parabolic equation, 50 Hz. 
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Figure 9. Bilinear profile, parabolic equation, i00 Hz. 
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Note, however, that at 25 Hz the caustic structures are so diffuse and overlapping 

that they are hardly recognizable. It is also instructive to note, while comparing 

Figs. 7 - 10, that the shadow zones are progressively being filled-in by diffraction 

effects at lower and lower frequencies. This, of course, is a well-known and experi- 

mentally observed effect. 

Finally, we present three examples, Figs. ll - 13, of acoustic propagation in 

the presence of an idealized sea-mount (or ridge), with W. Munk's canonical sound 

speed profile [h2J: 

2.18 c(z) = CAK1 + ~(n - 1 + e-n)], 

0 = 2(z - ZA)/B . 

In these examples, c A = 1500 m/sec, Z = .0074, and z A = B = 1.3 km. The floor of the 

ocean is at a depth of 4.5 km and the computational domain extends down to 5.0 km. 

The sea-mount rises halfway to the surface, or 2.25 km above the floor. The total 

horizontal range in all three examples is 400 ~n, and the frequency is 50 Hz. The 

plotting format is the same as in the previous examples except that the contour levels 

in the lower plot are 90 and i00 dB. In Figs. ii and 12 the bottom (including the 

sea-mount) is again made very lossy so that all acoustic waves that interact with 

the bottom are completely attenuated. In Fig. ii the source is 1.0 km deep, or 

slightly above the axis of the sound channel (at 1.3 km). It is seen that the effect 

of the sea-mount is to strip away the larger angle paths, leaving the near-axlal paths 

virtually unaffected. This transmission down the axis is quite good, but not to a 

receiver near the surface (or vice versa). This is seen clearly in Fig. 12 where 

the source is now near the surface, 0.1 km deep. Propagation is by means of deep- 

cycling RSR paths, which are intercepted and absorbed by the sea-mount leaving almost 

no measurable acoustic signal. The last example, Fig. 13, is the same as in Fig. 12 

except that the bottom is now not at all lossy, so that the reflection coefficient 

would be given by the Rayleigh formula. The critical angle in this case is about 

l0 ° at the ocean floor at h.5 km and becomes slightly more on the sea-mount because 

the sound speed of the bottom material was held constant. One observes that 
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Figure II. Canonical profile with sea mount, deep source, soft bottom. 
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Figure 12. Canonical profile with sea mount, shallow source, soft bottom. 
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Figure 13. Canonical profile with sea mount, shallow source, hard bottom. 
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steep-angle waves refract and penetrate the bottom where they are eventually absorbed, 

whereas shallow-angle waves are totally reflected back into the water. The result is 

that transmission across the sea-mount is quite good, except that receivers near the 

bottom are screened by the sea-mount. One may also observe the sub-bottom region 

where the penetrating ~ves are artificially absorbed to prevent these waves from 

being reflected back into the water. 

Numerical solutions of the parabolic wave equation produce in the course of 

solution full two dimensional acoustic fields; therefore contour plots of the above 

type require few additional calculations beyond those needed to solve the wave equa- 

tion itself. When more realistic sound speed profiles, bottom depth profiles, and 

volume loss functions are used in such numerical calculations, one obtains as output 

not only transmission loss curves (such as shown in Fig. h) whose numerical values 

can be compared directly to experimental data, but also plots of acoustic fields which 

give insight into the characteristics of acoustic wave propagation in realistic ocean 

environments. Thus one is in the enviable position of having a computer code that 

produces both insight and numbers, thereby confounding the aphorism that "the purpose 

of computing is insight~ not numbers" [65]. 

Before ending this section, we shall discuss two additional effects -- variable 

density and earth curvature -- that were not included in the model described above but 

which can be added with little additional effort to gain a somewhat greater degree of 

realism. 

In a fluid with given variable density p, the reduced wave equation for the 

acoustic pressure p is: 

2 

2.19 pV-(p Vp) + ~ -  p = O, 
c 

where as before c is the variable sound speed. 

that the replacement, 

It is well-known ~0,31] 

2.20 q = p/PJ~ 
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transforms eq. (2.19) into the standard Helmholtz form of the reduced wave equa- 

tion: 

2.21 Aq + k~n2q = 0, 

where k o = e/Co, and the "effective" index of refraction is given by 

2 2.22 n 

2 
Co l! - i 

• Co.2 + l_l - pl/2 v 
= t~-') 2k I ' (P-3/2Vp). 

The previous derivation of the parabolic wave equation can now be repeated (after 

inserting a volume loss term i~ which may now depend on density) by setting 

2.23 
~(1) 

q = ~ n O (kor), 

and obtaining 

2.24 2ik o ~ + V2~ + k (n2-1+iV)~ = O, 

which is exactly the same as (2.6) or (2.8) except that n is now given by (2.22). 

A word of caution should be given concerning the use of this variable density 

model in cases where the density changes discontinuously. We see from (2.22) 

that large gradients in p will make the effective index of refraction change by 

large amounts, and yet the derivation of the parabolic wave equation requires that 

n 2 be nearly constant. In order to use this model in numerical simulations, one 

must therefore "smear out" the changes in density. However, to retain the correct 

scattering from density variations, one must not overdo this smearing. Consider, 

for example, a density profile that changes suddenly from Pl to P2 at the bot- 

tom of the ocean. A possible analytic expression for the density is 

222 °(z) - ½(pl+ 2)÷ ½(P2 l)tanh( ) 
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where L is the vertical distance over which the density changes. In order that 

the reflection from this density Jump be correctly modeled, L must be small com- 

pared to the vertically projected wavelength, or 

2.26 k2L 2 sin 2 6 <<l, 
o 

where 8 is the angle of incidence (with respect to horizontal) and is usually 

very small. On the other hand, to avoid large values of n 2, (2.22) shows that 

L must be chosen such that 

2 2 P2-P l  
2 .27  koL >> ~ . 

Both c o n d i t i o n s  can be s a t i s f i e d  o n l y  i f  le l  i s  smal l  and I P 2 - P l l  i s  not  too 

large. Fortunately, this is the situation which commonly occurs in practice. For 

example, if lel ~ lO O and l(p2-Pl)/(p2+Pl) I < l, then the choice koL = 2 pro- 

vides an adequate and useful approximation. One should not worry about making L 

depend on acoustic frequency because this model, if properly implemented, will en- 

sure that the acoustic waves behave as though a discontinuity were present. It may 

also be worthwhile mentioning here that hydrophone sensors respond to the flux of 

acoustic energy which is equal to Ipl2/pc = lql2/c, so that computations of trans- 

mission loss with this model do not have to be renormalized with density ratios. 

Lastly, we consider the effect of earth curvature on long-range acoustic 

propagation in the ocean. Letting r be the horizontal range from a source and R 

be radius of the earth, the mean level of the ocean surface as a function of range 

is 

z s = R - (R2- r2 )  1 /2  = r 2 / 2 R .  2 .28  

The sound speed profiles are measured downward from this surface, and the two- 

dimensional parabolic wave equation becomes 

2.29 2ik o ~-~r + --+ k [n2(r,Z-Zs ) - 1]O = O. 
~z 2 
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We now make the transformation 

2.30a z' = z-z s = z - r2/2R, 

2.30b 
~(z,r) = $'(z',r)e ikOr(z-r2/3R)/R 

In the transformed variables, the parabolic wave equation takes the form 

2.31 
2, 2, , , 

2iko + ~2~____~, + ko[n ~r,z ) - 1 - 2z'/R]~ = O. 
~z ,2 

This transformation shows that, within the parabolic approximation, the effect of 

earth curvature is fully described by an additional term in the index of refraction 

which decreases linearly with depth. Thus the effective index of refraction is 

2.32 n,2 2 = n - 2z'/R. 

2 
Assuming n = l, this may also be expressed as an effective sound speed: 

2 . 33  c'(z',r) z e(z',r) + CoZ'/R. 

The effective sound speed has an additional term increasing linearly with depth. 

10-4 -i Since the gradient of this additional term is eo/R ~ 2.5 x see ~ and since 

the gradient of c in the deep ocean has the nearly universal value dc/dz 

1.7 × l0 "2 sec -1, we see that the effect of earth curvature is nearly unmeasurable 

because it only modifies the usunl deep ocean refraction by about 1%. Furthermore, 

the acoustic intensity is unchanged by the above transformation because 

i~12 = j¢,j2. ~hus, although the effeet is small it is easy to include e~th c=va- 

ture in the parabolic equation acoustic model. 

In this section, we have developed a versatile acoustic model based on the 

parabolic wave equation 8A%d we have illustrated the use of the model in several 

numerical calculations. In the next section, we shall re-examine the range of 
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validity of the model by formal asymptotic analysis. 

3. Aszmptotic Analysis 

In this section, we shall present some formal asymptotic analysis of the 

parabolic approximation in the context of underwater acoustics in order to better 

understand its range of validity and possibly to increase its scope. We shall con- 

sider a two dimensional (r,z) model in which the far-field approximation has al- 

ready been made. That is, we set p(r,z) = u(r,z)/W~- and assume k r >> 1 to ob- 
o 

tain 

22 
3.1 Urr + Uzz + kon (z,r)u = 0. 

As before, k o = e/Co, and n = Co/C(z,r) is the acoustic index with the dependence 

on azimuthal angle and time suppressed for notational convenience. We analyze 

this equation in two ways: first by means of a formal asymptotic scaling, and 

second by means of a factorization using pseudo-differential operators. 

To use scaling arguments on (3.1), we introduce the dimensionless variables 

3.2a Z' = Zko/f , 

3.2b r' = rko/f2, 

where f is a dimensionless parameter which at present will be left unspecified. 

Later, we shall see that f is best identified with the f-number of the sound 

channel previously introduced in section 1. Defining the envelope function ~ by 

3.3 u(z,r) = ~(z',r') exp(ikor), 

and substituting this relation into (3.1), we obtain 

3.4 k_ + f2(n2-1)~ = o. 
f2 ~r'r' + 2i~ r, + ~z'z' 
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3.5 n2 = 1 + n/f 2, 

and consider the formal asymptotic behavior as f + ~. 

question of how 

Ignoring for the moment the 

depends on z' and r', we make the expansion 

i ,(2) 3.6 9 = ,(0) +~,(11 +~ + ... , 

and equate powers of f2 to get 

3 . g a  2 i ~  + + = 0 ,  
z l z  t 

3.7b 2em(1) + ~(i) + n~(1) _~(0) 
~Wr~ "z'z' = r'r' " 

Eq. (3.7a) is the desired parabolic wave equation, and (3.7b) allows us to estimate 

the error made in neglecting the second, and higher, terms in the expansion (3.6). 

Assuming that at most ~(i) grows linearly with r' [i.e., ~(i) ~ r,~(O)], 

we see that the error will be order unity when r'/f 2 ~ 1. Thus we should restrict 

r to the range 

3.8 r ~ < fh/ko, 

to ensure that the error is small. 

We now must decide how to choose f. Three possible choices will be exam- 

ined, and the third will be selected. The conventional choice is [19, 57~ 

3.9 f = koB, 

where B is the width of the sound channel; i.e., the scale on which n varies 

with depth. This choice makes f extremely large and appears to give a very large 
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range of validity according to (3.8). However, this f depends on frequency, and 

from (3.5) we see that in general we would have to require that 

3 .i0 = O(AC/Co) = 0(I/f 2) = 0(1/k~B2). 

Since Ac/c is determined by oceanographic factors and is of course independent 
o 

of frequency, we would have to restrict ourselves to essentially one frequency only, 

namely, 

= Coko/2W ~ c o ~ /2wB ~ 2 Hz. 

We conclude that this choice is not suitable for general use. The severe restric- 

tion that we found here arose from the requirement that both the solution and the 

coefficient in the parabolic wave equation should vary on the same scale in z, 

namely B. However, as discussed in section 1 and as illustrated by numerical cal- 

culations in section 2, the focusing action of the sound channel causes the solution 

(the acoustic field) to vary on much shorter scales than the coefficient (the sound 

speed profile). 

A second special case where both scales can be nicely balanced is the case of 

SOFAR propagation in a quadratic profile: 

3 . 1 1  n 2 = 1 - e ( z / B ) 2 [ 1  + 8 c ( z , r ) / C o ] ,  

C = Ac/c o ~ 10 -2 , 

where the term ~c/c ° << i accounts for deviations, possibly random, from the quad- 

ratic profile. In this case the appropriate choice of f is [20] 

3.12 
• 2 2 l / 4  

f = (koB / ~ )  , 

since (3.7a) becomes 
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3.13 2i~r' + ~z'z' - z'2[l + ~C/eo]~ = O. 

It may be noted that (3.8) becomes in this case 

3.1h r f koB2/e ~ i0 h km, 

which agrees with the estimate given in Eq. (1.19). This is explained by the fact 

that the eigenvalue estimates given in section 1 were based on the lower modes of a 

quadratic profile (canonical for SOFAR propagation). We must now admit, however, 

that the above scaling and estimates are only valid for a very restricted class of 

problems and cannot be used for numerical examples presented in section 2 which 

clearly have quite different scales in the acoustic field and in the index of refrac- 

tion. 

We shall now show that the large parameter on which the parabolic approximation 

is based should be the f-number of the sould channel. Defining 

3.15 n2(z,r) = i + en(z,r), 

= Ac/c o ~ 10 -2 

: o(i), 

(a fixed constant), 

we conclude from (3.5) that the best choice for f for general applications in 

underwater acoustics is 

3.16 f = 1/~-- i0. 

The same choice for the expansion parameter ~as motivated physically in section i. 

The rms angle of propagation is e ~ i/f <<'I, and thus we again see that the para- 

bolic approximation is a small angle approximation. We also note that the scaling 

in (3.2) with this choice of f re-affirms the statements made in section i about 

the scales on which the acoustic field varies in depth and range due to propagation 
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in a continuous weakly focusing sound channel. 

and r' is order unity if 9 (0) satisfies 

2 (o) ,(o) +n, (°) o, 
3.17 "~r' + z'z' = 

The variation of ~(0) with z' 

and ~ is assumed to vary with z on the scale B. 

Expressing B in terms of z' and r', we find that 

3.18 n(z,r) = ~(z/B, r/A) = ~( z', ~-~r'). 
O O 

Thus in  genera l . ,  ~ w i l l  depend on t h e  a d d i t i o n a l  p a r ~ e t e r s ,  f /koB and f2/koA , 

which cannot be allowed to become large (they may be small). This imposes the con- 

ditions 

3.19 koB > ~ f = i/~, or V > ~ 2 Hz, 

which gives the lower limit of validity of the parabolic approximation, and 

3.20 A > fB, 

which determines the allowed rate of change of sound speed with range to be at least 

f times greater than its rate of change with depth. Finally, we note that on the 

basis of (3.8), the range of validity is limited to r ~ 104/ko , or about 100 km 

at lO0 Hz. This is a pessimistic estimate because we assumed the worst case, that 

~(1) grows linearly in r'. Assuming instead that errors tend to average out and 

that ~(1) r~ ~(0) ~ , we would instead conclude that 

3.21 r < ~ f6/ko, 

on r < !04 km at i00 Hz. Experience has shown that this more optimistic estimate 

is probably closer to reality if one uses practical measures of accuracy such as 
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average (over range) transmission loss, but that if one insists on absolute point- 

wise accuracy than the more pessimistic estimate is correct. 

Next, we turn to another method of deriving parabolic wave equations which is 

based on "splitting" the solution of the elliptic wave equation (3.1) into a sum of 

two solutions: one propagating outward toward large r, and the other propagating 

inward toward small r (the backscatted, or reverberant wave). The preceeding 

method of derivation, based on asymptotic scaling and expansion, has the disadvantage 

that the correction terms must be successively smaller, order by order. Thus to get 

the first correction, ~(1)/f2 one would solve (3.7a) for ~(0) substitute this 

into the right hand side of (3.7b), and solve for ~(1) by marching outward in r. 

If the resulting values of ~(1)/f2 are small, one has gained very little (and be- 

sides, no backscatter effects are picked up). On the other hand, if $(1)/f2 is of 

order unity so that the correction is significant, then the higher order terms in 

(3.6) will also be order unity and the asymptotic expansion is no longer useful. 

The splitting method to be presented does not have this disadvantage, and it enables 

one to obtain corrections valid to all orders as well as a useful approximation for 

backscatteredwaves. 

The starting point is again Eq. (3.1) which we here write in the form 

3.22 
~)2 2 2 
(7 + koQ )u = O, 

where the operator Q2 is defined by 

3.23 Q2 = n2(z,r) + 8~/ko 2, 

and 22 = ~2/~z2. In this and the next few paragraphs, we shall assume that the 
z 

dependence of n on the range variable r is so weak (or absent) that we can neg- 

lect ~n/Sr wherever it might appear. Later we shall return and pick up these 

neglected terms. Because of this assumption, the operator 8/Br com~utes with Q2 

and we can formally factor (3.22) into two equations: 
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~u+ 
3.24a i ~ + kQu+ = O, 

~u 

3.24b -i~ +koQU - = O, 

The full solution is the sum of the out~ing wave (u+) 

i.e., 

3.25 u(z,r) = u+(z,r) + u_(z,r). 

and the incoming wave (u_), 

We note that in this approximation there is no coupling between u+ and u_. Thus 

if u vanishes initially, it will remain zero. Of course, when there is no range 

dependence in the index of refraction then this factorization is exact, and follows 

from the physically obvious fact that range variations of the ocean are necessary 

to couple outgoing and incoming waves. 

In eqs. (3.24), Q is the pseudo-dlfferential operator given formally by 

3.26 

where 

Q = [ n 2 ( z , r ) +  ~lk2o} li2 

= [1 + ~ + ~]i12 

3.27 ~ = n2(z,r) - l, 

~2-k2 
3.28 ~ = z / o" 

We see that e is a multiplication operator and ~ is a differential operator 

(which happens to he second order with constant coefficient). The operator Q is 

called a pseudo-differential operator because, loosely speaking, it is a nonlocal 

operator, that is, Qu(z) cannot be expressed in terms of a finite number of deri- 

vatives of u at the point z. The existing mathematical theory of such operators 

does not appear to extend to this particular example, chiefly because the radicand 

is not positive definite and thus a branch cut needs to be introduced into the 

definition of Q. Nevertheless, the proper way to do this is clear from the spec- 
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tral decomposition of Q2 (normal mode analysis): one chooses the exponentially 

decaying branch (Im Q > 0) for the outgoing wave, and the opposite branch 

(Im Q < 0) for the incoming wave. Thus, strictly speaking, we should use different 

expressions for Q in eqs. (3.24a) and (3.24b). However, this distinction dis- 

appears in the parabolic approximation, and we need not concern ourselves here with 

the evanesaent modes. 

The standard parabolic wave equation results from a truncation of the Taylor 

series expansion of the operator Q: 

3.29 Q = m + ~ ( ~ + ~ )  - + " "  

Assuming that both e and ~ are small, we neglect the quadratic terms in (3.29) 

and substitute the remaining terms in (3.24a) to obtain 

3.30 i -~- + ko[l + (e+~)]u = O, 

where the subscript on u has been omitted because we shall deal only with the out- 

g o i n g  wave i n  t h e  n e x t  few p a r a g r a p h s .  U s i n g  t h e  d e f i n i t i o n s  o f  £ and g g i v e n  

by (3.27) and (3.28) and making the usual envelope definition u = ~ exp(ikor), we 

obtain 

80 1 ~ ko 
3.31 i ~÷2-~- 8 , +7 [n2(z'r)-l]* = 0, 

o 

which is the usual parabolic wave equation. 

We can now examine the conditions for validity of (3.31) from another point 

of view. We clearly need I lell << i and I I~II << i to make the local error 

small. As is often the case with approximations, estimates of cummulative errors are 

much more difficult to make and we shall not attempt to do so here. Now 

e = n2-1 = e2/c2-1 is determined by environmental conditions and by the choice of 
o 

c o . Since the sound speed c(z) varies by only a few parts in a hundred through 

the water column, it is clear how to choose c O so that IIgll is small. For 

example, we may define 
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3.32 

where ~ is the particular solution of (3.31) under consideration. This "norm" 

will depend on r, but it can easily be monitored during a numerical solution of 

(3.31) to see whether the parabolic approximation remains good. Since [$I 2 will 

tend to be large at a depth equal to the source depth (or the receiver depth in case 

one begins calculating from there), it follows from (3.32) that a good choice of 

c o is the sound speed at the source depth since a = 0 at this point and llcll 

will tend to be small. Numerical experience bears out this expectation. 

Conditions under which ~ is small are not so easy to state because, strictly 

speaking, U is an unbounded operator. However, in the underwater acoustic 

applications we are only interested in the effect of U acting on the acoustic field 

at long ranges (r >> B) and here ~ will vary slowly as a function of depth. 

Thus we define the "norm" of ~ by 

3 .33  I1 11 = I dzl I 1 12dz 

1  12dz/ I 1 '12d  = I ]k ° ~z 

where, as before, 

physical meaning of 

to horizontal, since 

corresponding angle. 

is the particular solution of (3.31) under consideration. The 

IIWII is the mean square angle of propagation with respect 

S~/Bz gives the vertical wavenumber and k~iB# /Sz is the 

This "norm" depends on r, and it too can easily be monitored 

during a numerical solution of (3.31), for example by using Parseval's relation 

and computing it in Fourier space. Therefore we have obtained an internal consistency 

check on the validity of the parabolic approximation: by monitoring the size of II~II 

and I I~II, we can keep track of the relative errors made in the course of a calculation. 

This was in fact done in the numerical calculations described in section 2, and 

typically it was found that both I I~II and I I~II remained less than about .Oh 

throughout the calculations. It may also be mentioned that retaining higher order 
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terms in the Taylor series expansion of Q given in (3.29) has the same disadvan- 

tage as with the asymptotic scaling expansion: when the correction terms are small 

they are not needed, and when they are large (order unity) then all higher terms 

must also be included. 

We shall next present a derivation of improved parabolic equations which re- 

quires that only one of the operators (a or ~) occurring in Q be small, but 

the other may be order unity. These equations represent significant improvements 

over the standard parabolic equation because they are valid to all orders in one of 

the operators £ or ~. Thus one is able to deal with index of refraction varia- 

tions which are order unity in amplitude, £ = O(1), or with propagation at large 

angles, ~ = 0(1). Of course if neither operator is small then one has no recourse 

except to return to the full elliptic equation. The basic idea in the derivation is 

the formal operator expansion 

3.34a (A+6B) I/2 = A + ~C + o(62), 

i 
~ _AI/2s _AI/2s 

3.34b C = e Be ds, 
0 

where A and B are operators (non-commuting, in general), and ~ is a small con- 

stant. A formal proof of this relation is easily given by squaring both sides 

of (3.34a) to obtain the operator equation B = A 1/2C + CA 1/2, and noting that C 

as given by (3.34b) is a formal solution of this equation. 

We now apply (3.34) to the operator Q givenby (3.26). There are two 

cases: e small or ~ small. We first consider W small. Neglecting terms of 

second order in W, we obtain 

3.36 

e_(l+e)i/2s Q ~ (1+£)1/2 + I ~e~(l+~)i/2Sds 

0 

I ~ 2 2 -ns 
= n + e -ns (~z/ko)e ds. 

0 

In this expression, n = n(z,r) and is order unity. Although this operator appears 
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formidable, it is actually easy to evaluate and is in fact a local operator. A 

straightforward calculation yields 

3.37 

e-2nS(uzz 2 2 Qu(z) = nu + ~-2 0 - SnzzU - 2SnzUz+S nzu)ds 

o 

2~ [(~Uz) z 1--f n2z_ nzz) u]_ 
= nu + + 2~n-- ~- n 2 , 

o 

where subscripts denote partial derivatives with respect to z. We then obtain a 

parabolic wave equation for u which is not substantially different from the stan- 

dard version. Use of (3.37) in (3.24) gives 

2 
~u 1 ~ ,~i ~u l_! - nz __nzz)]u 

338 i~+~~)+ko[n÷~(~ n O. 
o 2 " 

2 
This equation is valid to all orders in n -i, and has not previously been derived. 

To the author's knowledge, it has not yet been implemented numerically, although it 

would surely be worthwhile doing so, It may be noted that this equation is not equi- 

valent to any of the modified parabolic equations that were obtained in Section 

1 on the basis of replacing (n2-1)/2 by n-1. The exact form of (3.38) would be 

difficult to guess by such means. It is also worth noting that this improved para- 

bolic equation does not depend on the choice of the normalization sound speed c o . 

This is because it may be written in such a way that k o (= w/c o and n (= Co/C) 

always occur in the combination kon (= e/c) which is independent of e o. This 

property must of course hold for any equation that is valid for all values of n. 

Further, (3,38) conserves the flux of outgoing acoustic radiation: 

3.39 F+ = ; lul%z = const., 

which is a reassuring fact. 

Although (3.38) is a useful acoustic model as it stands~ some numerical al- 

gorithms (such as the one described in [35~38, 49]) for solving such equations are 

effective only if the differential operator has constant coefficients, which is 
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clearly not the case for (3.38). Therefore it is useful to transform (3.38) into 

an equivalent equation with constant coefficients. This can be done by changing 

the independent variable z to 

~ I z )]l/2dz 3.40 z = [n(z' ', 

and the dependent variable u to 

3.~i ~ = [n(z)]-i/~u. 

Further, we define the index of refraction in terms of ~ by 

3.42 m(z) = n(z(z)), or n(z) = m(z(z)), 

A straightforward calculation then transforms (3,38) into 

3.43 3U 1 ~2~ + ko[m(z) _ i_~_(~ ~2m + i___ 3m 2 
i ~ +  2k ° ~2 8~ ~i - ~  ~ 2 ( ~  ) )]~ = 0. 

This equation has the desired form, and it conserves the energy flux since 

344 ° I luI d  : I luI2dz : const 

Eq. (3.38), or its equivalent (3.h3), is in a sense unique in that it is the 

only equation having the form of a parabolic wave equation which is correct to all 

2 
orders in n -i. Other equations which do not have all the terms contained in (3.38) 

have not been systematically derived and cannot claim to be valid for large changes 

of the index of refraction. 

Next, we examine the other way of expanding Q via (3.34). Assuming that e 

is small but p is order unity, we obtain 
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3.45 Q ~ (l+~) 1/2 + I ~ e -(i+~)I/2s Ce -(l+~)I/2s ds 

0 

= ~ 2 i/2 2 2 1/2 
= (i+~2/k2)1/2 + I e-(l+Sz/k°) S(n2-1)e-(l+~z/k°) Sds 

z o 0 

Use of this expression in (3.24) gives 

3.46 

. 2 ^2,1/2 . 2 ~2,1/2 
~u (k2+~2)i/2 u 2 [oo s 2 -(ko+d z) S 

i ~ + + k 0 j dse -(ko+~z) (n -i)e u = O. 
o z 0 

The integral operator occurring in this equation does not appear to be susceptible 

to further reduction. Nevertheless, it may be useful in numerical calculations 

where Fourier space methods are used to evaluate the exponential operators (bearing 

in mind the remarks made earlier about proper treatment of branch cuts). Eq. (3.~6) 

is new, and it is the only improved parabolic wave equation known to the author 

which is valid for arbitrarily large angles (except for "exact" normal mode expan- 

2 
sions). If, in the integral operator term of (3.46), one neglects 3z compared to 

2 
k then this equation simplifies to 
o 

~u 2 ~2)i/2 u 
3.47 i ~+ (k ° + z + (n2-1)u = 0. 

Even though (3.47) is exact for propagation in an isovelocity ocean (n 2 = i), it 

is not a systematic asymptotic equation for the general case because there is no 

Justification for dropping 22 in the integral operator and retaining it in the 
z 

other term. Thus (3.47) is not a genuine improvement over the standard parabolic 

wave equation and its use should not be encouraged. This negative Judgement about 

(3.47) is supported by numerical experience. 

In the final portion of this section, we return to (3.22) and attempt to 

include the range dependence of n in the factorization of u into outward and 

inward propagating waves [25-29]. The main idea of this analysis is to simply 

transcribe the work of Bremmer on the second order ordinary differential equation 

analogous to (3.22) to the partial differential equation under consideration: 
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22 
3.48 [--~+ ko2J(r)]u = O, 

where Q(r) is the operator defined previously in (3.23). 

before, we now split u according to 

Instead of (3.25) used 

3.49a u = Q-i/2(u+ ÷ u_), 

3.49b 
~u Qll2(u+ - u ). 
~r = ik O 

These equations define 

3.50a 

3.50b 

u+ and u_, and we obtain 

1 Q1/2(u i ~u) 

U = 1Q1/2(u + i 8u~ 

It is now a simple matter to find the equations satisfied by u+ and u_ by dif- 

ferentiating (3.50) with respect to r, using (3.48) for ~2u/Sr2, and using 

(3.49) to replace u and ~u/Sr in terms of u+ sad u . The resulting pair of 

coupled equations for u+ and u are rather complicated and we shall not write 

them down here. When Q does not depend on r, they decouple and reduce to (3.24) 

previously derived. This fact demonstrates the main advantage of the factor- 

ization defined by (3.49), namely, that the equations for u+ decouple exactly when 

there is no range dependence in the index of refraction. The price which one pays 

for maintaining this physical requirement is that one must deal with the nonlocal 

operator Q, fractional powers of Q, and commutators of the type Q'~Q/$r~$Q/3r.Q [293. 

In the following~ we shall deal only with first order backscatter effects 

within the standard parabolic approximation. Thus we again use the Taylor series 

given in (3.29) and neglect quadratic terms. The result of this expansion of Q 

calculation is 

3.51a 
3u+ i 3c 

i ~-~-+ ko[l + ½(~+~)]u+ = ~rU, 
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3.51b 
~u_ i ~E 

-i~-v-+ ko[1 + ½(~+~)]u_ = - ~u+. 

As remarked above, these equations are coupled only through the r dependence of 

e(z,r) = n2(z,r)-l. These equations may be used to compute acoustic reverberation 

as follows. We set 

±ik r 
O 

3.52 u± = 9± e , 

and neglect the twice scattered waves to obtain 

3@+ 1 32@+ ko 2 
+~-[n (z,r)-l]@+ = 0 3.53a i ~-~-+ 2k ° 8z 2 

i ~n 2 2ikor 
3¢_ i ~2~_ + [n2(z,r)_l]¢ - = _ K ~-r--~+ e 

3.53b -i ~-~-+ 2k ° ~z 2 

Eq. (3.53a) is solved in the usual way for the outgoing wave by starting from r = 0 

and marching out to the largest desired range. This stored solution is then put 

into the right hand side of (3.53b) and the solution of this equation is obtained 

by marching inward from large r backward toward the source at r = O. In this 

manner, the acoustic energy scattered back from the environment to the source can 

be computed within the parabolic approximation. In principle, this procedure could 

be iterated: by sweeping forward and backward successively, one would build up the 

full solution of (3.48). In practice, the single-scatter approximation described 

above appears to be adequate. 

4. Summary 

This article has dealt with various aspects of parabolic approximation 

methods in underwater acoustics, mostly for propagation of sinusoidal signals. 

Extensions of these methods to time-dependent problems are also available: pulse 

propagation, moving sources and receivers, frequency shifting effects due to rapid 

temporal variations of oceanic conditions, and so forth. However, an adequate des- 

cription of these extensions would require another long section and it was felt 
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that the principles involved in making parabolic approximations have been suffici- 

ently illustrated. Parabolic equation methods in underwater acoustics were developed 

only in the last few years, and as more and more use is made of these methods we may 

expect that many of the important modelling problems in ocean acoustics may be 

solved. 
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Appendix A. Historical s~ve~ of parabolic wave equation applications 

The "standard" parabolic wave equation in underwater acoustics has the same 

form as Schroedinger's equation in quantum mechanics, and thus mathematical studies 

of this equation go back to at least the mid-1920's. Indeed, this analogy provides 

a convenient point of entry for physicists going into underwater acoustics. However, 

as an approximation method in the theory of wave propagation, the parabolic wave 

equation dates from the work of Leontovich and Fock [1,2] in the mid-19hO's. In 

fact, it was these scientists who coined the name "parabolic equation method". They 

applied the method to the problem of tropospheric radio wave propgation to long 

range (over the horizon). They were concerned with calculating the diffraction 

caused by the spherical shape of the earth, and the "preferred" direction needed to 

make the small-angle parabolic approximation was the line of sight between the an- 

tenna and the horizon. This method was later applied to many other radio wave dif- 

fraction problems [2,3] such as high frequency scattering by obstacles of various 

shapes. It has also been extensively applied [h,5] to the theory of microwave 

resonators, waveguides, and antennas. 

When coherent sources of optical radiation (lasers) were developed in the 

early 1960's, it was a natural development to apply the parabolic equation method 

to problems of laser beam propagation, and this was quickly done [6,7]. In this 

field, the parabolic wave equation is usually called the "quasi-optical" equation. 

This equation is especially used for problems in nonlinear optics where the index 

of refraction depends on the intensity, thereby giving a nonlinear parabolic wave 

equation which is sometimes called the "nonlinear Schroedinger" equation. The 

parabolic equation method has also been applied to nonlinear optical pulse propaga- 

tion in dielectric fibers [8], an area which is currently of great interest. In 

the past decade hundreds of research papers have been published by workers in non- 

linear optics who use the "quasi-optical" approximation, and this research has re- 

cently been thorougjaly reviewed [9,10]. 

In the field of plasma physics, there has occurred in recent years an enor- 

mous increase of interest in parabolic equation methods. Many types of waves can 

propagate in plasmas, and most work is concerned with nonlinear effects which in 
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plasmas are especially large and significant. Some examples of such applications 

can be found in Ill-14]. 

The parabolic equation method has also been extensively used since about 1R68 

to study the abstract problem of beam propagation in random media. The beams may 

consist of radio %raves (radars), acoustic waves (sonars), optical waves (lasers), and 

so forth. This abstract problem is equivalent to the quantum mechanical problem of 

the motion of a particle in a random potential, and has been investigated by many 

scientists and applied mathematicians using a variety of techniques [15-21]. A con- 

crete application of this method to the problem of radar beam propagation through 

randomly fluctuating ionospheres, including numerical simulations in three dimen- 

sions using the "split-step Fourier" algorithm, is given in [22]. 

In the field of seismic wave propagation, the parabolic equation method has 

been used since about 1970 [23] with no apparent awareness of its many other appli- 

cations. These geophysical applications have been successful, and are thoroughly re- 

viewed in [24]. 

The most recent application of the parabolic equation method to a concrete 

physical problem has been the subject of this article: low-frequency long-range 

underwater acoustic propagation. The early results of this application were re- 

ported in 1973-1974 [35-38]. A computer program was constructed which solves the 

parabolic wave equation using the split-step Fourier algorithm and accepts as input 

data measured oceanographic sound speed profiles and volume loss profiles (as func- 

tions of both range and depth) and ocean depth contours from nautical charts. Out- 

put data from the program (acoustic fields and transmission loss curves) were com- 

pared to experimental measurements and to other acoustic models with generally ex- 

cellent results. At the same time, most of the theoretical considerations discussed 

in the main text of this article were developed and reported [35-38]. 

Interest is this new method spread rapidly, and soon groups of scientists at 

other laboratories developed their own computer programs based on the parabolic 

equation method, and the same split-step Fourier algorithm. The method was extended 

[39,43] to much higher acoustic frequencies than were originally contemplated with 

equally good numerical results. Another extension [&O] to include random internal 
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wave fluctuations [41] in the index of refraction was also quite successful. Since 

then, numerous additional investigations [44-57] of parabolic equation methods in 

underwater acoustics have been carried out at many laboratories, and this method 

is now (1976) widely available and routinely used for acoustic prediction studies . 

The best available computer program for general acoustic use is called PE (for Para- 

bolic Equation), and was developed at the Acoustic Environmental Support Detachment, 

Maury Center, Office of Naval Research [49,50]. Currently (1976), several groups 

are developing parabolic equation acoustic models that are three-dimensional and/or 

fully time-dependent. 

*)These remarks (and references) were added much later than the lecture (on which 
this article is based) was presented. 
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